• Title/Summary/Keyword: Peripheral nerve stimulation

Search Result 97, Processing Time 0.023 seconds

Characterization of Electroacupuncture Effects on the Responses of Rat Dorsal Horn Neurons to Noxious Stimulation (전침자극이 흰쥐척수후각세포의 유해자극반응에 미치는 효과의 특성)

  • Shin, Hong-kee;Park, Dong-suk;Lee, Seo-eun;Kim, Jin-hyuk
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.167-182
    • /
    • 2002
  • This experiment was designed to investigate the effects of electroacupuncture (EA) on chronic pains and factors that affected EA effects. The responses of wide dynamic range (WDR) cells to electrical stimulation of $A{\delta}$ & C afferent fibers were used as an index of pain in rats with chronic pains induced by intraplantar injection of complete Freund's adjuvant or peripheral nerve injury. In rats with chronic pains, low (2Hz) and high (100Hz) frequency EA stimulation applied to zusanli caused the inhibition of WDR cell responses in about 60% of rats and the inhibitory actions were dependent on the stimulus strength. EA stimulation also induced an excitation of WDR cell responses in 23.9% of rats and no effect in 15.8% of rats. However, it seemed that in normal rats compared to the rat with chronic pains, the incidence of which EA stimulation caused the excitation or no effect was high. Reversible spinalization almost completely blocked EA-induced inhibitory or excitatory effects. EA stimulation more frequently induced the excitation of WDR cell responses in lightly anesthetized (0.6%) rats and the enhanced responses of WDR cells were inhibited by EA stimulation in the rat anesthetized with 1.5% enflurane. These experimental findings suggest that in rats with chronic pain, EA stimulation inhibited WDR cell responses to slow $A{\delta}$ and C fiber stimulation and EA-induced inhibitory action was under the control of descending inhibitory system and degree of anesthesia.

  • PDF

Etifoxine for Pain Patients with Anxiety

  • Choi, Yun Mi;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.28 no.1
    • /
    • pp.4-10
    • /
    • 2015
  • Etifoxine (etafenoxine, $Stresam^{(R)}$) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by $GABA_A{\alpha}2$ receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to ${\beta}2$ or ${\beta}3$ subunits of the $GABA_A$ receptor complex. It also modulates $GABA_A$ receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates $GABA_A$ receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.

The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification (Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향)

  • Song, Jin-Su;Jin, Eun-Jung
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1346-1351
    • /
    • 2009
  • Recent evidence has shown that many pluripotetic neural crest cells are fate-restricted and that different fate-restricted crest cells emigrate from the neural tube at different times. Jin et al. (2001) identified the expression patterns of Wnts and its antagonists at the time that neural crest cells were being specified and suggested that Wnt signaling was involved in the segregation/differentiation of neural crest cells in the trunk in vitro. In this study, we evaluated the effects of Wnt signaling in avian neural crest lineage segregation. To accomplish this, Wnt signaling was disturbed at the time of neural crest segregation and differentiation by grafting Wnt-3a expressing cells and conducting dominant negative glycogen synthase kinase (dnGSK) electroporation. Stimulation of Wnt signaling induced neural crest lineage segregation and melanoblast specification, and increased the expression levels of genes known to be involved in neural crest development such as cadherin 7 and Slug, which suggests that they are involved in Wnt-induced neural crest lineage differentiation into melanoblasts.

$\alpha_2$-Adrenoceptors are Implicated in the Electroacupuncture-induced Analgesia of Experimental Chronic Pain (전침자극이 만성통증을 억제하는 아드레날린성 기전에 대한 연구)

  • Shin Hong-Kee;Lee Kyung-Hee;Park Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.67-77
    • /
    • 2004
  • Objectives : Many studies have reported that acupuncture analgesia was mediated through the activation of peripheral and central opioid receptors. However, there has been little electrophysiological study on the adrenergic mechanism of acupuncture analgesia in chronic inflammatory and neuropathic pain. The present study was undertaken to elucidate the role of adrenoceptors in the production of acupuncture analgesia in the chronic pain model. Methods : In the rat with chronic inflammation and nerve injury, dorsal horn cell (DHC) responses to afferent C fiber stimulation were used as a pain index and changes in electroacupuncture (EA) analgesia were recorded before and after intravenous administration of selective adrenoceptor antagonists. EA stimulations (2Hz, 0.5msec, 3mA) were applied to the contralateral Zusanli point for 30 min. Results : EA stimulation induced long-lasting inhibition of DHC responses in the rat with chronic inflammation and nerve injury. In both models of inflammation and neuropathic pain, α-adrenoceptor antagonist (phentolamine) significantly attenuated an inhibitory effect of EA on DHC responses. Selective α2-adrenoceptor antagonist (yohimbine) also had a similar suppressive action on DHC responses to that of phentolamine. However, β-adrenoceptor antagonist (propranolol) did not have any inhibitory effect on DHC responses in either model of chronic pain. Conclusions : These experimental findings suggest that in rats with chronic pain, EA stimulation with low frequency and high intensity produced an analgesic effect which was mediated through an activation of α2-adrenoceptors.

  • PDF

Changes in Sensory Function After Transcranial Direct Current Stimulation on Primary Motor Cortex Area

  • Min, Dong-Ki
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity direct current to cortical areas, thereby facilitating or inhibiting spontaneous neuronal activity. This study was designed to investigate changes in various sensory functions after tDCS. We conducted a single-center, single-blinded, randomized trial to determine the effect of a single session of tDCS with the current perception threshold (CPT) in 50 healthy volunteers. Nerve conduction studies were performed in relation to the median sensory and motor nerves on the dominant hand to discriminate peripheral nerve lesions. The subjects received anodal tDCS with 1 mA for 15 minutes under two different conditions, with 25 subjects in each groups: the conditions were as follows tDCS on the primary motor cortex (M1) and sham tDCS on M1. We recorded the parameters of the CPT a with Neurometer$^{(R)}$ at frequencies of 2000, 250, and 5 Hz in the dominant index finger to assess the tactile sense, fast pain and slow pain, respectively. In the test to measure CPT values of the M1 in the tDCS group, the values of the distal part of the distal interphalangeal joint of the second finger statistically increased in all of 2000 Hz (p=.000), 250 Hz (p=.002), and 5 Hz (p=.008). However, the values of the sham tDCS group decreased in all of 2000 Hz (p=.285), 250 Hz (p=.552), and 5 Hz (p=.062), and were not statistically significant. These results show that M1 anodal tDCS can modulate sensory perception and pain thresholds in healthy adult volunteers. The study suggests that tDCS may be a useful strategy for treating central neurogenic pain in rehabilitation medicine.

Role of Nitric Oxide Produced During Endotoxic Shock in Sympathetic Nervous Function (Endotoxin에 의해 생성된 혈관의 nitric oxide가 교감신경계에 미치는 영향)

  • 박관하
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • Endotoxic shock causes death in humans and animals via extreme hypoperfusion of peripheral organs. A massive production of nitric oxide (NO) both from the endothelical cells and smooth muscle cells has been proposed as a possible mechanism in this process. Since NO attenuated the contractility to vasoconstricting agents such as norepinephrine (NE) by directly acting on the smooth muscle cells, this mechanism was considered mainly as a postsynaptic mechanism. In this research it was investigated whether NO, thus released, also participates in the presynaptic events for the regulation of vascular tone in endotoxic shock. The role of NO was studied by adding NO donors or NO synthase inhibitor $N^\omega $methyl-L-arginine (NMA) in stimulated sympathetic nerves of the mesenteric vascular bed and the Langendorff heart of rats. Sodium nitroprusside (SNP), an NO donor, reduced the pressor responses of isolated mesenteric artery either to electrical stimulation or exogenously administered phenylephrine (PE). In this mesentery, although neither agent influenced NE release, in the presence of the adrenergic $\alpha_2$-receptor antagonist yohimbine, elecrical stimulation-evoked NE release was augumented by SNP. In the heart SNP facilitated the NE release induced by electrical stimulation, while NMA had no effect. From these results it is proposed that there exists a local reflex phenomenon in the junction between the sympathetic nerve terminals and the smooth muscle of resistance blood vessels; by which sympathetic responses are reduced by NO at the postjunctional level while NO facilitates NE release contributing to augumentation of sympathetic tone. All these facts suggest that NO produced during endotoxic shock has dual effects: whereas NO blunts the vasoconstrictive activity of NE at the postsynaptic level, NO presynaptically facilitates the release of NE from sympathetic nerve terminals.

  • PDF

Properties of the Arterial Pressor Response Induced by Stimulation of the Ventral Root Afferent Fibers in the Cat (고양이 척수 전근내 감각신경 자극으로 유발된 승압반응의 생리학적 특성)

  • Kim, Jun;Seoh, Sang-Ah;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.129-138
    • /
    • 1989
  • In an attempt to characterize the ventral root afferent fibers, arterial blood pressure responses to stimulation of the ventral root (VR) were observed in anesthetized cats. Effects of the morphine administered either intravenously or direct spinally and of the spinal lesions on the pressor responses were compared. Followings are the results obtained. 1) Stimulation of the VR with C-strength, high frequency stimuli evoked a marked pressor response. No depressor response, which had been reported during peripheral nerve stimulation, was observed during VR stimulation with low frequency. 2) Acute cervical spinalization abolished the pressor response, indicating the involvement of supraspinal mechanism. 3) The ascending spinal pathways of the pressor response were located in the dorsolateral funiculus bilaterally. 4) Intravenously administered morphine exaggerated the pressor response to VR stimulation, while direct spinally administered morphine suppressed it. From the above results it was concluded that the ventral root afferent fibers have more similar properties to muscular C-afferent fibers than to cutaneous C-fibers.

  • PDF

Cardiovascular Neurons Mediating Somatosympathetic Reflex in Rostral Ventrolateral Medulla

  • Goo, Yong-Sook;Kim, Sang-Jeong;Kim, Jun;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.185-197
    • /
    • 1993
  • The rostral ventrolateral medulla (RVLM) includes vasopressor neurons, which transmit activation signals to the intermediolateral nucleus (IML) of the spinal cord, where the preganglionic sympathetic nucleus is located, to raise arterial blood pressure (BP). However, controversy exists as to the possible depressor area in the RVLM and the pathway involved. The present study persued evidence far the location of depressor neurons and the pathway by simultaneously observing changes in BP and the firing rate (FR) of cardiovascular neurons (CVNs) in the RVLM during the somatosympathetic reflex (SSR) elicited by peripheral nerve stimulation, since CVNs are known to contribute to the generation of the sympathetic nerve discharge. In 42 cats, anaesthetized with $\alpha-chloralose$, single unit recording was performed, using carbon filament electrodes inserted into the RVLM, enabling estimation of the post R wave unit histogram (PR-UNlT) and the spike triggered average of sympathetic nerve discharge (STA-SND), allowing identification of CVNs. Antidromic stimulation of spinal $T_2$ segment was followed to determine whether the identified CVN projects axonal endings to the spinal cord (reticulospinal neuron). The sciatic nerve was electrically stimulated at $A\delta-intensity$ (1 mA, 0.1 ms), 1 Hz and C-intensity (10 mA, 0.5 ms), 20 Hz to elicit the depressor, and pressor responses of the SSR, respectively. Simultaneous measurement of CVN firing rate was made. Experimental results are summarized as follows. 1) 20 out of 98 CVNs had axonal projections to the spinal cord and 17 out of 98 CVNs showed FR changes during SSR. 2) Response patterns of FR and BP during SSR were classified into 8 types. 3) These 8 different response patterns could be further classified into those from pressor and depressor neurons. These results demonstrate that some CVNs were identifiable as reticulospinal neurons responding to anti-dromic stimulation and that CVNs operating as depressor neurons as well as pressor neurons exist in the RVLM, both of which are involved with SSR mediation. Therefore, evidence was found that an independent depressor pathway might be involved in the mediation of SSR.

  • PDF

Development of stimulator for peripheral disturbance therapy using A variable Micro-electromagnetic (미약 전자기장을 이용한 말초장애 치료시스템 개발)

  • Kim, Soo-Byung;Lee, Seung-Wook;Shim, Ta-Kyu;Lee, Na-Ra;Lee, Yong-Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1209-1216
    • /
    • 2010
  • It has increased that peripheral disturbance(blood flow, nerve, Raynaud's phenomenon) and finger rheumatoid arthritis which is caused by the diabetic complications. To improve these pain issues, we proposed new method for the Finger Disease Therapy(FDT). In this paper, we manufactured solenoid cylindrical coil which was only for the FDT using a variable micro-electromagnetic. Also, we designed the Finger Disease Therapy System(FDTS) which could select three stimulation modes(N_pulse, S_pulse, N/S_pulse) and frequency(0.25hz, 0.5hz, 1hz). We used a Teslameter to measure magnetic flux inner solenoid, and measured magnetic flux as distance(0 ~ 3cm) inner solenoid with stimulation modes and frequency. In the results, magnetic flux was the highest in center of solenoid(0cm) for all stimulation modes. Also, the highest magnetic flux was measured as N_pulse(294.3mT), S_pulse(293.8mT) in 1Hz and N/S_pulse (275.4mT) in 0.25Hz, respectively. Therefore, we developed the FDTS using various pattern and intensity for finger diseases therapy, and checked therapy clinic application possibility of the FDTS as measuring magnetic flux inner solenoid.

Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

  • Kim, Young-Hwan;Ahn, Duck-Sun;Joeng, Ji-Hyun;Chung, Seungsoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.489-495
    • /
    • 2014
  • Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ${\omega}$-conotoxin GVIA (CgTx), a selective N-type $Ca^{2+}$ channel ($I_{Ca-N}$) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ${\omega}$-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of $I_{Ca-N}$ which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.