Objective: The aim of this study is to develop management guidelines and a procedure for an anthropometric suitability assessment of the main control room (MCR) in nuclear power plants (NPPs). Background: The condition of the MCR should be suitable for the work crews in NPPs. The suitability of the MCR depends closely on the anthropometric dimensions and ergonomic factors of the users. In particular, the MCR workspace design in NPPs is important due to the close relationship with operating crews and their work failures. Many documents and criteria have recommended that anthropometry dimensions and their studies are one of the foremost processes of the MCR design in NPPs. If these factors are not properly considered, users can feel burdened about their work and the human errors that might occur. Method: The procedure for the anthropometric suitability assessment consists of 5 phases: 1) selection of the anthropometric suitability evaluation dimensions, 2) establishment of a measurement method according to the evaluation dimensions, 3) establishment of criteria for suitability evaluation dimensions, 4) establishment of rating scale and improvement methods according to the evaluation dimensions, and 5) assessment of the final grade for evaluation dimensions. The management guidelines for an anthropometric suitability assessment were completed using 10 factors: 1) director, 2) subject, 3) evaluation period, 4) measurement method and criteria, 5) selection of equipment, 6) measurement and evaluation, 7) suitability evaluation, 8) data sharing, 9) data storage, and 10) management according to the suitability grade. Results: We propose a set of 17 anthropometric dimensions for the size, cognition/perception action/behavior, and their relationships with human errors regarding the MCR design variables through a case study. The 17 selected dimensions are height, sitting height, eye height from floor, eye height above seat, arm length, functional reach, extended functional reach, radius reach, visual field, peripheral perception, hyperopia/myopia/astigmatism, color blindness, auditory acuity, finger dexterity, hand function, body angle, and manual muscle test. We proposed criteria on these 17 anthropometric dimensions for a suitability evaluation and suggested an improvement method according to the evaluation dimensions. Conclusion: The results of this study can improve the human performance of the crew in an MCR. These management guidelines and a procedure for an anthropometric suitability assessment will be able to prevent human errors due to inadequate anthropometric dimensions. Application: The proposed set of anthropometric dimensions can be integrated into a managerial index for the anthropometric suitability of the operating crews for more careful countermeasures to human errors in NPPs.