• Title/Summary/Keyword: Peripheral Nerve Stimulation Levels

Search Result 6, Processing Time 0.021 seconds

Clinical Somatosensory Evoked Potential (임상 체성감각 유발전위 검사)

  • Ryoo, Jae-Kwan;Kim, Jong-Soon
    • Journal of Korean Physical Therapy Science
    • /
    • v.3 no.1
    • /
    • pp.907-918
    • /
    • 1996
  • Evoked potentials(EP) are defined as electric responses of the nerves system to sensory stimulation. EPs are used mainly to test conduction in the visual, auditory, and somatosensory systems, especially in the central parts of these systems. Somatosensory evoked potentials (SEP) are the potentials elicited by stimulation of peripheral nerves and recorded at various sites along the sensory pathway. SEPs types consist mainly of SEPs to electric stimulation of arm or leg nerves. SEPs to arm stimulation are usually recorded simultaneously from clavicular, cervical, and scalp electrodes; SEPs to leg stimulation are recorded from lumbar, low thoracic, and scalp electrodes. Subject variables that have practical impotance are age, limb length, body height, and temperature. General clinical interpretation of abnormal SEPs wave decreases of peripheral conduction time, and abolition of SEPs recorded from different levels to identify lesions of peripheral nerves, plexus, nerve root, spinal cord, cauda equina, hemispheric brainstem, and cerebral parts of the somatosensory pathway.

  • PDF

Studies of the Effects of Acupuncture Stimulation at Huatuo Jiaji(EX B2) Points on Axonal Regeneration of Injured Sciatic Nerve in the Rats (화타협척혈 침자극에 의한 손상 말초신경의 재생효과에 관한 연구)

  • Kim, Dae-Feel;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.39-61
    • /
    • 2008
  • Objectives : The present study was performed to investigate whether acupuncture stimulation in the rats affected regeneration properties of the injured sciatic nerve. A differential effect of acupuncture stimulation on the one point near the spinal nerve root controlling sciatic nerve activity and the other point in the peripheral area subordinated by injured nerve was compared. Materials and Methods: Rat sciatic nerves were injured by crush, and the effects on axonal regeneration on injured sciatic nerves were evaluated by acupuncture stimulation at two different regions. In proximal acupuncture stimulation group, acupuncture stimulation was performed on Huatuo Jiaji(EX B2) points located from L5 to S1 vertebral levels to stimulate the nearest spinal nerve root that innervates sciatic nerves. In distal acupuncture stimulation group, acupuncture stimulation was performed on Zusanli(ST 36) and Weizhong(BL 40) points to stimulate at peripheral area dominated by injured sciatic nerves. Acupuncture stimulation was given every other days for 1 or 2 weeks. Sciatic nerve tissues collected from acupuncture stimulation experimental groups, injury control group, and intact animal group were used for protein analysis by Western blotting or Hoechst nuclear staining. To determine axonal regeneration, Dil fluorescence dye was injected into the sciatic nerve 0.5 cm distal to the injury site in individual animal groups and Dil-labeled cells by retrograde tracing were measured in the DRG at lumbar 5 or in the spinal cord. DRG sensory neurons prepared from individual animal groups were used to measure the extent of neurite outgrowth and for immunofluorescence staining with anti-GAP-43 antibody. Results : Animal groups given proximal or distal acupuncture stimulation showed upregulation of GAP-43 and Cdc2 protein levels in the sciatic nerve at 7 days after injury. Cdk2 protein levels were strongly induced by nerve injury, but did not show changes by acupuncture stimulation. Phospho-Erk1/2 protein levels were elevated by acupuncture stimulation above those present in the injury control animals. These increase in regeneration-associated protein levels appeared to be related with increase cell proliferation in the injured sciatic nerves. Hoechst 33258 staining of sciatic nerve tissue to visualize nuclei of individual cells showed increased Schwann cell number in the distal portion of the injured nerve 7 and 14 days after injury and further increases by acupuncture stimulation particularly at the proximal position. Measurement of axonal regeneration by retrograde tracing showed significantly increased Dil-labeled cells in proximal acupuncture stimulation group compared to distal acupuncture stimulation group and injury control group. Finally, an evaluation of axonal regeneration by retrograde tracing showed increased number of Dil labeled cells in the DRG at lumbar 5 or in the ventral horn of the spinal cord at lower thoracic level at 7 days after nerve injury. Conclusions : The present data show that the proximal acupuncture stimulation at Huatuo Jiaji(EX B2) points governing injured sciatic nerves was more effective for axonal regeneration than the distal acupuncture stimulation. Further studies on functional recovery or associated molecular mechanisms should be critical for developing animal models and clinical applications.

Motor and Somato Sensory Evoked Potentials During Intraoperative Surveillance Testing in Patients with Diabetes

  • Lee, Kyuhyun;Kim, Jaekyung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2020
  • Cerebral vascular surgery can damage patients' motor and sensory nerves; therefore, neuromonitoring is performed intraoperatively. Patients with diabetes often have peripheral neuropathy and may be prone to nerve damage during surgery. This study aimed to identify factors that should be considered when diabetic patients undergo intraoperative neuromonitoring during brain vascular surgery and to present new criteria. Methods: In patients with and without diabetes who underwent cerebrovascular surgery (n = 30/group), we compared the intraoperative stimulation intensity, postoperative motor power and sensory, glycated hemoglobin (HbA1c) and glucose levels, and imaging findings. Results: Fasting glucose, blood glucose, and HbA1c levels were 10%, 12.1%, and 9.7%, respectively; they were higher in patients with than in patients without diabetes. Two patients with diabetes had weakness, and 10 required increased Somato sensory evoked potential (SSEP) stimulation, while in 16, motor power recovered over time rather than immediately. The non-diabetic group had no weakness after surgery, but 10 patients required more increased SSEP stimulation. The diabetic group showed significantly more abnormal test results than the non-diabetic group. Conclusion: For patients with diabetes undergoing surgery with intraoperative neuromonitoring, whether diabetic peripheral neuropathy is present, their blood glucose level and the anesthetic used should be considered.

The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification (Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향)

  • Song, Jin-Su;Jin, Eun-Jung
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1346-1351
    • /
    • 2009
  • Recent evidence has shown that many pluripotetic neural crest cells are fate-restricted and that different fate-restricted crest cells emigrate from the neural tube at different times. Jin et al. (2001) identified the expression patterns of Wnts and its antagonists at the time that neural crest cells were being specified and suggested that Wnt signaling was involved in the segregation/differentiation of neural crest cells in the trunk in vitro. In this study, we evaluated the effects of Wnt signaling in avian neural crest lineage segregation. To accomplish this, Wnt signaling was disturbed at the time of neural crest segregation and differentiation by grafting Wnt-3a expressing cells and conducting dominant negative glycogen synthase kinase (dnGSK) electroporation. Stimulation of Wnt signaling induced neural crest lineage segregation and melanoblast specification, and increased the expression levels of genes known to be involved in neural crest development such as cadherin 7 and Slug, which suggests that they are involved in Wnt-induced neural crest lineage differentiation into melanoblasts.

The Expression of neuronal Nitric Oxide Synthase in Reinnervated Recurrent Laryngeal Nerve (흰쥐에서 편측 반회후두신경 재지배 후 neuronal Nitric Oxide Synthase(nNOS)의 발현과 후두기능회복과의 관계)

  • 정성민;김성숙;조윤희;구태완;박수경;신유리
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.12 no.1
    • /
    • pp.46-54
    • /
    • 2001
  • Background and Objectives : Nitric oxide(NO) is a short-lived molecule with messenger and cytotoxic functions in nervous, cardiovascular, and immune systems. Among the three distinct NOS isoforms, the neuronal isoform is expressed in small, discrete neuronal populations of CNS and PNS. Axonal injury in adult animals results in a dramatic NOS up-regulation in many types of central and peripheral neurons which normally lack the enzyme or express it only at very low levels. In previous study, we confirmed the efficacy of PEMS on the early functional recovery in rats with surgically transected and reanastomosed recurrent laryngeal nerve. Therefore, after we obtained functionally recovered rats using PEMS in this study, we studied to evaluate the expression of nNOS through the analysis of the difference between functional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 84 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The rats in group A(n=42) received PEMS by placing them in custom cages equipped with Helm-holz coils(3 hr/day, 5 days/wk, for 12 wk). The rats in group B(n=42) were handled the same way as the group A, except that they did not receive PEMS. Laryngovideoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining using monoclonal anti-neuronal nitric oxide synthase(nNOS) antibody was performed to detect nNOS in recurrent laryngeal nerve and nodose ganglion. Results : 20 rats(63%) in group A and 5 rats(17%) in the group B showed recovery of vocal fo1d motion. The number of NOS-positive cells was increased in functionally-recovered rats. NOS-staining intensity was reduced 12 weeks after nerve injury. The difference between PEMS group and non-stimulated group was not found. Conclusion : This study shows that nNOS may exert a beneficial effect on nerve regeneration and functional repair.

  • PDF

Alternative Input Lower Weight Information Method Error to Reduce Specific Absorption Rate in MRI (자기공명영상 검사 시 환자정보의 체중을 낮게 입력하여 전자파흡수율을 감소시키는 대안의 오류)

  • Choi, Kwan-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.472-477
    • /
    • 2020
  • The purpose of this study is to correct the error of lower weight input method as an alternative to reduce the specific absorption rate(SAR) in MRI. In order to prove that the SAR values not change according to the weight entered into the patient information, the 50kg phantom is placed in the coil and the input weight is changed from 10 to 100 in 10kg units to compare the SAR values. As a result, T1-weighted images had a SAR rate of 0.2W/kg and T2-weighted images had an average of 0.4W/kg. In conclusions, the SAR does not change according to the weight input by the technician before the scan, a lower weight when inputting patient information cannot be an alternative to reduce the SAR.