• Title/Summary/Keyword: Periodic Solution

Search Result 388, Processing Time 0.022 seconds

STABILITY OF A PERIODIC SOLUTION FOR FUZZY DIFFERENTIAL EQUATIONS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.217-222
    • /
    • 2003
  • In this paper, we consider the fuzzy differential equations (equation omitted) where F(t, x(t)) is a continuous fuzzy mapping on [0, $\infty$) ${\times}$ E$\^$n/. The purpose of this paper is to prove that the solution ${\Phi}$(t) of the fuzzy differential equations is equiasymptotically stable in the large and uniformly asymptotically stable in the large.

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

STABILITY OF POSITIVE PERIODIC NUMERICAL SOLUTION OF AN EPIDEMIC MODEL

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • We study an age-dependent s-i-s epidemic model with spatial diffusion. The model equations are described by a nonlinear and nonlocal system of integro-differential equations. Finite difference methods along the characteristics in age-time domain combined with finite elements in the spatial variable are applied to approximate the solution of the model. Stability of the discrete periodic solution is investigated.

  • PDF

EXISTENCE AND GLOBALLY EXPONENTIAL STABILITY OF PERIODIC SOLUTION OF IMPULSIVE FUZZY BAM NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND VARIABLE COEFFICIENTS

  • Zhang, Qianhong;Yang, Lihui;Liao, Daixi
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1031-1049
    • /
    • 2012
  • In this paper, a class of impulsive fuzzy bi-directional associative memory (BAM) neural networks with distributed delays and variable coefficients are considered. Using Lyapunov functional method and fixed point theorem, we derived some sufficient conditions for the existence and globally exponential stability of unique periodic solution of the networks. The results obtained are new and extend the previous known results. In addition, an example is given to show the effectiveness of our results obtained.

Study of New Control Method for Linear Periodic System

  • Jo, Janghyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.83-87
    • /
    • 1999
  • The purpose of this study is to provide the new method for selection of a close to optimal scalar control of linear time-periodic system. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T. The form of gain matrix may have various kinds but must have same period, for example, one of each element being represented by Fourier series. As the optimal gain matrix I consider the matrix ensuring the minimum value of the larger real part of the Poincare exponents of the system. Finally we present a pole placement algorithm to make the given system be stable. It is possible to determine the stability of the given periodic system without get the analytic solution. The application of the method does not require the construction of the Floquet solution. At present state of determination of the gain matrix for this case will be done only by systematic numerical search procedures.

  • PDF