• Title/Summary/Keyword: Periodic Heat Excitation

Search Result 4, Processing Time 0.016 seconds

Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium (유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

Development of LabVIEW Program for Lock-In Infrared Thermography (위상잠금 열화상장치 제어용 랩뷰 프로그램 개발)

  • Min, Tae-Hoon;Na, Hyung-Chul;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • A LabVIEW program has been developed together with simple infrared thermography(IRT) system to control the lock-in conditions of the system efficiently. The IR imaging software was designed to operate both of infrared camera and halogen lamp by synchronizing them with periodic sine signal based on thyristor(SCR) circuits. LabVIEW software was programmed to provide users with screen-menu functions by which it can change the period and energy of heat source, operate the camera to acquire image, and monitor the state of the system on the computer screen. In experiment, lock-in IR image for a specimen with artificial hole defects was obtained by the developed IRT system and compared with optical image.