• 제목/요약/키워드: Periodic Feature

검색결과 62건 처리시간 0.022초

DIDF 방법을 이용한 주기성 외란의 제거 (Periodic Disturbance Cancellation by using Dual-Input Describing Function (DIDF) Method)

  • 최연욱;이형기
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.168-175
    • /
    • 2010
  • The issue of rejecting periodic disturbances arises in various applications dealing with rotating machinery. A new method using DIDF (Dual-Input Describing Function) is presented for the rejection of periodic disturbances with uncertain frequency. This can be added to an existing feedback control system without altering the closed-loop system stability. The objective is to design a nonlinear compensator to secure specified oscillation amplitude and frequency which are the same as disturbances. We suggest two procedures to determine coefficients for DIDF's synthesis. The structure of the proposed DIDF is so simple that we can easily synthesize. A number of computer simulations were carried out to demonstrate the salient feature of the proposed DIDF compared to the conventional ones(that is, adaptive algorithms).

유리 용융로에서 자연대류의 열적 불안정성 (Thermal Instability of Natural Convection in a Glass Melting Furnace)

  • 임광옥;이관수
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1774-1783
    • /
    • 1998
  • The transition from steady laminar to chaotic convection in a glass melting furnace specified by upper surface temperature distribution has been studied by the direct numerical analysis of the two and three-dimensional time dependent Navier-Stokes equations. The thermal instability of convection roll may take place when modified Rayleigh number($Ra_m$) is larger than $9.71{\times}10^4$. It is shown that the basic flows in a glass melting furnace are steady laminar, unsteady periodic, quasi-periodic or chaotic flow. The dimensionless time scale of unsteady period is about the viscous diffusion time, ${\tau}_d=H^2/{\nu}_0$. Through primary and secondary instability analyses the fundamental unsteady feature in a glass melting furnace is well defined as the unsteady periodic or weak chaotic flow.

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

적응적 멀티 레벨 코드 기반의 심전도 신호 압축 (ECG Signal Compression based on Adaptive Multi-level Code)

  • 김정준
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.519-526
    • /
    • 2013
  • 심전도 신호는 P, Q, R, S, T파를 한 주기로 하여 반복되는 특징을 가지고 있으며 일반적으로 높은 표본화 주파수로 샘플링 된다. 이러한 심전도 신호의 주기적인 특징을 이용하여 진단에 중요한 정보의 손실을 최소화하면서 압축 효율을 극대화시키는 방법이 필요하다. 그러나 이러한 주기적인 특징은 심검자와 측정 시기에 따라 진폭과 주기가 일정하지가 않다. 또한 환자의 경우, 같은 시기에 측정하더라도 주기적 특징이 다르게 나타나는 구간이 존재한다. 본 논문에서는 적응적 멀티 레벨 코드를 이용하여 주도적인 신호 구간과 비주도적인 신호 구간의 심전도 신호를 적응적으로 코드화하는 방법을 제안한다. 제안하는 방식은 주도적인 신호 구간과 비주도적인 신호 구간에 따른 손실 대비 압축률을 차등 적용함으로써 반복적인 신호를 멀티 레벨 코드를 이용하여 압축의 효율성을 극대화하는 것이다. 이는 심전도 신호의 주기성을 이용하지 않은 기존의 압축 방식에 비해 장시간 측정 데이터의 압축률을 극대화시키고 비주도적인 신호를 코드화하여 무손실 압축을 함으로써 진단에 중요한 정보를 손실 없이 보존할 수 있는 장점이 있다. MIT-BIH 부정맥 데이터베이스에 있는 심전도 신호에 대한 실험을 통하여 압축의 효용성을 검증하였다.

텍스트-배경무늬 혼합문서로부터 수리형태학을 이용한 문자열 추출 (String extraction from text-background mixed documents using mathematical morphology)

  • 성연진;어진우
    • 전자공학회논문지S
    • /
    • 제34S권10호
    • /
    • pp.104-111
    • /
    • 1997
  • It is known as a difficult problem to recognize text-background mixed documents. In this paper a new string extraction algorithm, using mathematical morphology for the document consisting of text and overlapped periodic background pattern, is proposed. The algorithm consists of pattern periodicity feature extraction and background removal. The extracted pattern periodicity feature is used to determine the shape of structuring elements for morphological pre- and post-processing to remove background. The effectiveness of the proposed algorithm over the existing one is also verified through the experiments with various test documents.

  • PDF

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Abyssal Circulation Driven by a Periodic Impulsive Source in a Small Basin with Steep Bottom Slope with Implications to the East Sea

  • Seung, Young-Ho
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.287-296
    • /
    • 2012
  • In the theory of source-driven abyssal circulation, the forcing is usually assumed to be steady source (deep-water formation). In many cases, however, the deep-water formation occurs instantaneously and it is not clear whether the theory can be applied well in this case. An attempt is made to resolve this problem by using a simple reduced gravity model. The model basin has large depth change compared for its size, like the East Sea, such that isobaths nearly coincide with geostrophic contours. Deep-water is formed every year impulsively and flows into the model basin through the boundary. It is found that the circulation driven by the impulsive source is generally the same as that driven by a steady source except that the former has a seasonal fluctuation associated with unsteadiness of forcing. The magnitudes of both the annual average and seasonal fluctuations increase with the rate of deep-water formation. The problem can be approximated to that of linear diffusion of momentum with boundary flux, which well demonstrates the essential feature of abyssal circulation spun-up by periodic impulsive source. Although the model greatly idealizes the real situation, it suggests that abyssal circulation can be driven by a periodic impulsive source in the East Sea.

전류신호 해석에 의한 유도전동기 결함추출 연구 (A Study on Fault Detection of Induction Motor Using Current Signal Analysis)

  • 한상보;황돈하;강동식;손종덕
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.274-279
    • /
    • 2007
  • The fault identification of electrical rotating machinery have been special interests due to one of important elements in the industrial production line. It is directly related with products quality and production costs. The sudden breakdown of a motor will affect to the shut down of the whole processes. Therefore, rotating machines are required to a periodic diagnosis and maintenance for improving its reliability and increasing their lifetime. The objective of this work is to develop the diagnosis system with current signals for the effective identification of healthy and faulty motors using the developed diagnosis algorithm, which consists of the feature calculation, feature extraction, and feature classification procedures.

  • PDF

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • Lee, Donggyu;Lee, Dongjin;Choi, Hyunje;Jo, Sungbae
    • East Asian mathematical journal
    • /
    • 제30권5호
    • /
    • pp.583-597
    • /
    • 2014
  • In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.