• Title/Summary/Keyword: Periodic Boundary Conditions

Search Result 123, Processing Time 0.025 seconds

Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge (수중방전에 의한 압력분포의 2차원 해석)

  • Kim, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF

VALIDATION OF GRID AND BOUNDARY CONDITIONS FOR OPTIMAL DESIGN OF HEAT RECOVERY SYSTEM (열 회수 시스템의 최적 설계를 위한 격자 및 경계 조건 검증에 관한 연구)

  • Lee, D.G.;Shin, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.608-609
    • /
    • 2011
  • In this study, we tried to validate FLUENT solver model and domain setting for the problem of convective heat transfer in multiple tube bank under transitional zone. We have paid special attention to verify proper boundary conditions and the grid convergence. Through validation work, it is found that unsteady solution method with two-dimensional simulation domain can produce reasonable accurate results compared with existing experimental data. Simulation results with steady solution generates relatively large error. We found that both steady and unsteady method for three-dimensional domain shows acceptable accuracy. Further parametric study for deriving correlation from transverse and longitudinal pitch is currently underway.

  • PDF

Optimal Solution of a Cyclic Task Using the Global Path Information for a Redundant Robot (여유자유도 로봇에 있어서 광역의 경로정보를 이용한 주기작업의 최적해)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.3
    • /
    • pp.6-15
    • /
    • 1992
  • This paper proposes a method for the global optimization of redundancy over the whole task period for a kinematically redundant robot. The necessary conditions based on the calculus of variations for an integral type cost criterion result in a second-order differential equation. For a cyclic task, the periodic boundary conditions due to conservativity requirements are discussed. We refine the two-point boundary value problem to an initial value adjustment problem and suggest a numerical search method for providing the conservative global optimal solution using the gradient projection method. Since the initial joint velocity is parameterized with the number of the redundancy, we only search the parameter value in the space of as many dimensions as the number of degrees of redundancy. We show through numerical examples that multiple nonhomotopic extremal solutions and the generality of the proposed method by considering the dynamics of a robot.

  • PDF

Full Wave Analysis of EM Absorbers Using 3D Hybrid Finite Element Method (3차원 혼성 유한요소법을 이용한 전파흡수체의 전파 특성 해석)

  • 정영춘;김병욱;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.440-448
    • /
    • 1999
  • This paper describes a full wave analysis of the scattering from electromagnetic absorbers which can be approximated as infinite periodic structure using hybrid finite element method. By introducing fictitious boundaries, equivalent finite region is defined and proper boundary conditions of each boundary are obtained by Floquet theorem. Since higher-order Floquet modes are employed, the method presented in this paper can be readily applied to the periodic structure haying a relatively long period. To reduce difficulty in evaluating the surface integral, the normal component to the surface were represented with the tangential component to the surface. Comparisons of calculated results with analytical or published ones show the validation of the method.

  • PDF

Analysis of Topological Effects of Phase-Shifting Mask by Boundary Element Method (경계요소법을 이용한 위상변이 마스크의 단차 효과 분석)

  • Lee, Dong-Hoon;Kim, Hyun-Jun;Lee, Seung-Gol;Lee, Jong-Ung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.33-44
    • /
    • 1999
  • The boundary element method was newly implemented into an optical lithography simulator so that it could evaluate rigorously the topological effects of 2dimensional phase-shifting masks. Both transparent and periodic boundary conditions were applied for the method, and the continuity conditions were used for treating interface nodes. The accuracy of the module developed for simulating aerial images was verified by comparison with analytic solutions and published results. In addition, it was found that our simulator would be more efficient than the conventional method based on the rigorous coupled wave analysis in views of the convergence and the calculation speed. Finally, the optimal design of two phase-shifting masks was performed.

  • PDF

Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution

  • Song, Zhiwei;Li, Wei;Liu, Guirong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.487-499
    • /
    • 2012
  • Dynamic instability of beams subjected to periodic axial forces is studied using the discrete singular convolution (DSC) method with the regularized Shannon's delta kernel. The principal regions of dynamic instability under different boundary conditions are examined in detail, and the non-stationary vibrations near the stability-instability critical regions have been investigated. It is found that the results obtained by using the DSC method are consistent with the analytical solutions, which shows that the DSC algorithm is suitable for the problems considered in this study. It was found that there is a narrow region of beat vibration existed in the vicinity of one side (${\theta}/{\Omega}$ > 1) of the boundaries of the instable region for each condition.

The Mode Analysis for field pattern analysis of a Finite Periodic Dielectric Structure (유한한 유전체 격자구조에서 필드패턴 분석을 위한 모드연구)

  • Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.645-648
    • /
    • 2008
  • In this paper, we analyze inner- and far-field emitted field pattern by more exactly calculating modes formed from a finite periodic dielectric structure(FPDS). It is assumed that TE-modes are generated in FPDS, and the fields in each layer are determined by proper boundary conditions. Consequently, the fields generate modes in the FPDS and the number of modes depends on its structural characteristics. In this work, the modes betwween dielectric layers and their field patterns are calculated in a specific frequency. In addition. far field patterns are given by using FFT of the calculated modes.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

The Analysis of Tidal Effect on Stress-Strain Behavior in the Boundary Surface of Sea Dike Embankment (조석현상이 방조제 경계면의 응력-변형 거동에 미치는 영향 분석)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study was performed for the purpose of analyzing the effect of tide on the stress-strain behavior in the boundary surface of sea dike embankment. Tide is a dynamic condition, but there are not suitable numerical models to solve the dynamic embankment condition caused by tide. So the analysis was simplified to quasi dynamic as follow. First, seepage by tide was analyzed according to elapsed time, and the results of the analysis at every hour during one periodic cycle time of 12 hours were applied to the pore water pressure conditions of stress-strain analysis with hyperbolic model by Duncan and Chang. The place at which maximum shear strain took place in the analysis result moved up and down repeatedly along the boundary of the dredged sand fill section and the crashed stone filter section. The value of maximum shear strain was large at high water level of tide. This result means that contraction and relaxation occur in turn repeatedly at every specific position along the boundary, and the repeated action compact loose position with sand moved down from the upper position by gravity. The experiment with the small sea dike model showed the result consistent with the numerical analysis. The surface of sea side on the dike collapsed at high water level after a couple of repetition of the rising and falling of water.

Thermal Convection with Conducting Lid (전도체가 존재하는 자연대류 현상에 대한 수치적 유동 가시화)

  • Ha Man Yeong;Lee Jae Ryong;Balachandar S.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.117-120
    • /
    • 2005
  • This study of thermal convection uses the following geometry: a horizontal layer of fluid heated from below of solid lid at bottom and cooled from above. A variety range of thermal conductivity ratio, $\kappa$ is considered to investigate the interface temperature, $\theta_{i}$ between solid and fluid region. Periodic boundary conditions are employed in the horizontal direction to allow for lateral freedom for the convection cells. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral multi-domain methodology, for different effective Rayleigh numbers, $Ra_{eff}$ varying over the range of $10^{4}\;to\;10^{7}$ in which the effective Rayleigh number is defined as $Ra{\times}<\overline{T}_{i}>$.

  • PDF