• Title/Summary/Keyword: Period of Durability

Search Result 252, Processing Time 0.029 seconds

Mid term experience with CarboMedics Medical Valve (CarboMedics 기계판막의 임상경험)

  • 김기출
    • Journal of Chest Surgery
    • /
    • v.26 no.10
    • /
    • pp.753-760
    • /
    • 1993
  • The CarboMedics valve is a bileaflet prosthesis with excellent hemodynamic characteristics, but the long term surgical experience with this valve, its durability and its biocompatibility are unknown. During a 5 year period from october 1988 to July 1993, 748 prostheses [402 mitral, 261 aortic, 58 tricuspid, 27 pulmonic] were inserted in 552 patients [mean age 40.2 years]. The operative mortality was 6.6% [37/560, 13.2% in age group below 15 years and 5.7% above 15 years]. and the main causes of death were complex congenital malformation and left ventricular failure. Follow up was totaled 1182 patient- years and mean follow up was 28.3 months/patient. No structural failure has been observed. Hemorrhage was the most frequent valve related complication[1.78% / Patient-year]. Embolism occurred at a rate of 0.93% / Patient-year. There were 5 cases of valve thrombosis [0.42% / Patient-year, two fatal]. There occurred 11 late deaths[6 valve related] and 42 valve related complications. Actuarial survival at 5 years is 97.18 0.94% and actuarial complication free survival at 5 years is 89.07 1.54%. In summary, the CarboMedics valve stands for a durable valve substitute, with low valve related complications.

  • PDF

A Study on Optimum Design of 2MW Wind Turbine Gearbox Using a Integrated Design Software (통합설계프로그램을 이용한 2MW 풍력발전시스템용 기어박스의 최적설계에 관한 연구)

  • Choi, Young-Hyuk;Park, Koo-Ha;Jo, Joon-Haeng;Lee, In-Woo;Oh, Sei-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.249-252
    • /
    • 2006
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these component are interacting with each other therefore changing certain design parameter will affect other components. RomaxDesigner enables a reduction in development period by simulating the full gearbox system. The gear pairs, bearings and shafts are represented as analysis objects and the complex components are modelled by means of reduced stiffness matrices. The software allows durability analysis and advanced contact analysis including the effects of system misalignments in gear and bearing. In this paper the 2MW wind turbine gearbox was model led and a study on optimum design was conducted

  • PDF

Effect of Adding Scoria as Cement Replacement on Durability-Related Properties

  • al-Swaidani, Aref Mohamad;Aliyan, Samira Dib
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • A lot of reinforced concrete (RC) structures in Syria went out of service after a few years of construction. This was mainly due to reinforcement corrosion or chemical attack on concrete. The use of blended cements is growing rapidly in the construction industry due to economical, ecological and technical benefits. Syria is relatively rich in scoria. In the study, mortar/concrete specimens were produced with seven types of cement: one plain Portland cement (control) and six blended cements with replacement levels ranging from 10 to 35 %. Rapid chloride penetration test was carried in accordance with ASTM C 1202 after two curing times of 28 and 90 days. The effect on the resistance of concrete against damage caused by corrosion of the embedded steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential. The variation of current with time and time to failure of RC specimens were determined at 28 and 90 days curing. In addition, effects of aggressive acidic environments on mortars were investigated through 100 days of exposure to 5 % $H_2SO_4$, 10 % HCl, 5 % $HNO_3$ and 10 % $CH_3COOH$ solutions. Evaluation of sulfate resistance of mortars was also performed by immersing in 5 % $Na_2SO_4$ solution for 52 weeks. Test results reveal that the resistance to chloride penetration of concrete improves substantially with the increase of replacement level, and the concretes containing scoria based-blended cements, especially CEM II/B-P, exhibited corrosion initiation periods several times longer than the control mix. Further, an increase in scoria addition improves the acid resistance of mortar, especially in the early days of exposure, whereas after a long period of continuous exposure all specimens show the same behavior against the acid attack. According to results of sulfate resistance, CEM II/B-P can be used instead of SRPC in sulfate-bearing environments.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

Influence of silver nanoparticles on resin-dentin bond strength durability in a self-etch and an etch-and-rinse adhesive system

  • Jowkar, Zahra;Shafiei, Fereshteh;Asadmanesh, Elham;Koohpeima, Fatemeh
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.13.1-13.9
    • /
    • 2019
  • Objectives: This study evaluated the effect of dentin pretreatment with silver nanoparticles (SNPs) and chlorhexidine (CHX) on the microshear bond strength (${\mu}SBS$) durability of different adhesives to dentin. Materials and Methods: Occlusal surfaces of 120 human molars were ground to expose flat dentin surfaces. The specimens were randomly assigned to six groups (n = 20). Three groups (A, B, and C) were bonded with Adper Single Bond 2 (SB) and the other groups (D, E, and F) were bonded with Clearfil SE Bond (SEB). Dentin was pretreated with CHX in groups B and E, and with SNPs in groups C and F. The specimens were restored with Z250 composite. Half of the bonded surfaces in each group underwent ${\mu}SBS$ testing after 24 hours and the other half was tested after 6 months of water storage. Results: SNP application was associated with a higher ${\mu}SBS$ than was observed in the CHX and control groups for SEB after 24 hours (p < 0.05). A significantly lower ${\mu}SBS$ was observed when no dentin pretreatment was applied compared to dentin pretreatment with CHX and SNPs for SB after 24 hours (p < 0.05). The ${\mu}SBS$ values of the 6-month specimens were significantly lower than those obtained from the 24-hour specimens for all groups (p < 0.05). This decrease was much more pronounced when both adhesives were used without any dentin pretreatment (p < 0.05). Conclusions: SNPs and CHX reduced the degradation of resin-dentin bonds over a 6-month period for both adhesive systems.

The Combined Effect of Concrete Environment and High Temperature on Interlaminar Shear Strength of FRP Reinforcement (콘크리트 환경과 고온의 복합환경이 FRP 보강근의 계면전단성능에 미치는 영향)

  • Moon, Do-Young;Oh, Hong-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.749-756
    • /
    • 2011
  • Most experimental studies on durability of FRP reinforcements subjected to high temperature have focused on the effect of high temperature only on tensile properties. But FRP reinforcement used in newly constructed concrete structure is first degraded by moisture and alkaline environment of concrete. When the structure is subjected to fire, the degraded FRP reinforcement is exposed to high temperature. Therefore, the effects of concrete environment and high temperature should be simultaneously considered for evaluation of FRP reinforcement damaged by fire. In this study, FRP reinforcements submerged in simulated solutions of pH 12.3 and 7 for extended period of time were subjected to temperatures of $60^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, and $300^{\circ}C$ to be examined. In order to investigate the effect of the high temperature, interlaminar shear strengths were measured and compared to those of control ones. The experimental results demonstrated that the combined effect of concrete environment and high temperature on properties of FRP reinforcement was more significant than the effect of high temperature or concrete environment solely.

Long-Term Outcomes of Modified Cone Reconstruction for Ebstein's Anomaly in Pediatric Patients in a Single Center

  • Ilkun Park;Tae-Gook Jun;Ji-Hyuk Yang;I-Seok Kang;June Huh;Jinyoung Song;Ok Jeong Lee
    • Korean Circulation Journal
    • /
    • v.54 no.2
    • /
    • pp.78-90
    • /
    • 2024
  • Background and Objective: We aimed to investigate long-term clinical and echocardiographic outcomes, including tricuspid valve durability, annular growth, and left ventricular reverse remodeling, after modified cone reconstruction in patients with Ebstein's anomaly. Methods: This was a retrospective analysis of all pediatric patients who underwent modified cone reconstruction for Ebstein's anomaly at a single tertiary center between January 2005 and June 2021. Results: A total of 14 pediatric patients underwent modified cone reconstruction for Ebstein's anomaly; the median age was 5.8 years (range, 0.01-16.6). There were three patients (21.4%) with Carpentier type B, ten patients with Carpentier type C (71.4%), and one patient with Carpentier type D (7.1%). There was no early or late mortality, arrhythmia, or readmission for heart failure at a 10-year follow-up. There were no cases of more than mild tricuspid stenosis or more than moderate tricuspid regurgitation during the study period, except for one patient with severe tricuspid regurgitation who underwent reoperation. The z value for tricuspid valve annular size significantly decreased immediately after the operation (2.46 vs. -1.15, p<0.001). However, from 1 year to 7 years after surgery, the z values were maintained between -1 and +1. Left ventricular end-systolic volume, end-diastolic volume, and stroke volume increased after surgery and remained elevated until seven years postoperatively. Conclusions: Ebstein's anomaly in children can be repaired by modified cone reconstruction with low mortality and morbidity, good tricuspid valve durability, and annular growth relative to somatic growth.

Performance Based Evaluation of Concrete Chloride Diffusion Resistance from Wind Speed-Sunlight Exposure Time Curing Conditions of Climate Change (기후변화에 대한 풍속과 일조시간의 콘크리트 염화물확산 저항성의 성능중심평가)

  • Kim, Tae-Kyun;Cho, Chul-Min;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.601-609
    • /
    • 2016
  • Recently, extreme climate change has been occurring globally not only in the simple form of temperature increases but also in a wide range of extreme climatic events, such as abnormal drought conditions and frequent typhoons. In addition, climate change is delaying the construction period of concrete structures, increasing related economic losses. Forcing construction projects for completion without considering climate change is leading to concrete quality deterioration, poor quality constructions, and consequent casualties and property damage. Therefore, to address these problems and provide a countermeasure to climate change, the present study selected wind speed, and sunlight exposure time as the most important curing conditions among the climate factors affecting concrete structures and examined their effects on the curing and durability of concrete structures. In addition, for the analysis of the experimental results, this study proposed a process of performance based evaluation (PBE) of concrete strength and durability using a method of Satisfaction Curve (SC) generation.

Electrochmical Characteristics by Water Cavitation Peening of Cu Alloy (워터캐비테이션피닝된 동합금의 전기화학적 특성평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1083-1090
    • /
    • 2012
  • Copper alloys are widely used for casting materials including ship's propellers and pump impellers as they provide high corrosion resistance. In addition, the demand for these alloys is increasing with rapid growth of offshore structures and exploitation of various substitute energy sources. However, they require regular maintenance because of erosion and cavitation damages induced by exposure to marine environment at high speed flows for a long period of time. Water cavitation peening have received attention as one of surface modifications for durability improvement of the copper alloys. This is a environment friendly technology without influence of heat and easily applicable to casting materials. In this research, water cavitation peening was employed in distilled water for copper alloy castings as a function of time and evaluation of corrosion resistance was followed in seawater for the modified surface by using electrochemical methods. The result suggests that the water cavitation peening for 2 minutes was found to be the optimal peening parameter in terms of durability and corrosion resistance.