• Title/Summary/Keyword: Perfusion MR

Search Result 93, Processing Time 0.031 seconds

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF

Implementation of an Algorithm for Image Mapping of the Cerebral Perfusion Parameters using the Gamma-Variate Curve Fitting (Gamma-Variate 곡선 정합을 이용한 뇌관류 파라미터의 영상 Mapping 알고리즘 구현)

  • 이상민;강경훈;김재형;이건기;신태민
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • 최근 MR영상을 허혈성 뇌졸중의 초급성기에 뇌조직의 관류 이상을 조기에 진단하려는 연구들이 진행되고 있으나 아직 일반적인 진단용 소프트웨어만 있을 뿐 영상 자료를 후처리하여 뇌조직의 구조 및 기능적인 정보를 제공하는 mapping 영상을 특수 소프트웨어는 실용화되어 있지 않다. 본 논문에서는 Gamma-variate 곡선 정합을 이용한 뇌관류 파라미터 영상 mapping의 알고리즘 구현에 관해 연구하였다. 관류 MR영상의 각 화소마다 측정된 시간에 따른 신호강도의 변화 곡선은 비선형적이어서 뇌관류에 관한 여러 가지 혈역학적 변수들을 보다 정확하게 계산할 수 없었다. 그래서 수렴속도가 빠르고 안정성이 높은 비선형 최적화 알고리즘인 Levenberg-Marquardt 알고리즘(LMA)을 활용하였다. 즉 시간에 따른 신호강도의 변화 곡선을 Gamma-variate 함수를 이용하여 곡선 정합한 후, CBV, MTT, CBF, TTP, BAT, MS의 여러 가지 혈역학적 변수를 LMA에 의해 계산하였다. 그 결과로 관류 MR영상으로부터 얻은 mapping 영상은 초급성 허혈성 뇌졸중에서 관류에 관한 혈역학적 변화를 평가함으로써 나중에 생길 뇌경색의 범위를 예견하는 데에 유용하였다.

  • PDF

Alzheimer Dementia and Microvascular Pathology: Blood-Brain Barrier Permeability Imaging (알츠하이머 치매와 미세뇌혈관병리: 혈액뇌장벽 투과도 영상)

  • Won-Jin Moon
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.3
    • /
    • pp.488-500
    • /
    • 2020
  • Accumulating evidence suggests that Alzheimer's disease (AD) is not only caused by accumulation of abnormal proteins, including amyloid and tau, but is also closely associated with abnormalities in the microvascular environment including the blood-brain barrier (BBB), both of which lead to neuroinflammation and neurodegeneration. Application of in vivo magnetic resonance imaging (MRI) has recently increased to assess BBB permeability in AD and related diseases. Here, we provide a narrative review of BBB permeability-related pathology in Alzheimer dementia and recent MRI research on BBB permeability changes in AD and related diseases. Furthermore, we briefly introduce the measurement of BBB permeability using MRI and its methodological issues.

Assessment of solid components of borderline ovarian tumor and stage I carcinoma: added value of combined diffusion- and perfusion-weighted magnetic resonance imaging

  • Kim, See Hyung
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.3
    • /
    • pp.231-240
    • /
    • 2019
  • Background: We sought to determine the value of combining diffusion-weighted (DW) and perfusion-weighted (PW) sequences with a conventional magnetic resonance (MR) sequence to assess solid components of borderline ovarian tumors (BOTs) and stage I carcinomas. Methods: Conventional, DW, and PW sequences in the tumor imaging studies of 70 patients (BOTs, n=38; stage I carcinomas, n=32) who underwent surgery with pathologic correlation were assessed. Two independent radiologists calculated the parameters apparent diffusion coefficient (ADC), $K^{trans}$ (vessel permeability), and $V_e$ (cell density) for the solid components. The distribution on conventional MR sequence and mean, standard deviation, and 95% confidence interval of each DW and PW parameter were calculated. The inter-observer agreement among the two radiologists was assessed. Area under the receiver operating characteristic curve (AUC) and multivariate logistic regression were performed to compare the effectiveness of DW and PW sequences for average values and to characterize the diagnostic performance of combined DW and PW sequences. Results: There were excellent agreements for DW and PW parameters between radiologists. The distributions of ADC, $K^{trans}$, and $V_e$ values were significantly different between BOTs and stage I carcinomas, yielding AUCs of 0.58 and 0.68, 0.78 and 0.82, and 0.70 and 0.72, respectively, with ADC yielding the lowest diagnostic performance. The AUCs of the DW, PW, and combined PW and DW sequences were $0.71{\pm}0.05$, $0.80{\pm}0.05$, and $0.85{\pm}0.05$, respectively. Conclusion: Combining PW and DW sequences to a conventional sequence potentially improves the diagnostic accuracy in the differentiation of BOTs and stage I carcinomas.

Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging

  • Gao Ma;Xiao-Quan Xu;Liu-Ning Zhu;Jia-Suo Jiang;Guo-Yi Su;Hao Hu;Shou-Shan Bu;Fei-Yun Wu
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.243-252
    • /
    • 2021
  • Objective: To compare and correlate the findings of intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging and arterial spin labeling (ASL) imaging in characterizing parotid gland tumors. Materials and Methods: We retrospectively reviewed 56 patients with parotid gland tumors evaluated by MR imaging. The true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and fraction of perfusion (f) values of IVIM imaging and tumor-to-parotid gland signal intensity ratio (SIR) on ASL imaging were calculated. Spearman rank correlation coefficient, chi-squared, Mann-Whitney U, and Kruskal-Wallis tests with the post-hoc Dunn-Bonferroni method and receiver operating characteristic curve assessments were used for statistical analysis. Results: Malignant parotid gland tumors showed significantly lower D than benign tumors (p = 0.019). Within subgroup analyses, pleomorphic adenomas (PAs) showed significantly higher D than malignant tumors (MTs) and Warthin's tumors (WTs) (p < 0.001). The D* of WTs was significantly higher than that of PAs (p = 0.031). The f and SIR on ASL imaging of WTs were significantly higher than those of MTs and PAs (p < 0.05). Significantly positive correlation was found between SIR on ASL imaging and f (r = 0.446, p = 0.001). In comparison with f, SIR on ASL imaging showed a higher area under curve (0.853 vs. 0.891) in discriminating MTs from WTs, although the difference was not significant (p = 0.720). Conclusion: IVIM and ASL imaging could help differentiate parotid gland tumors. SIR on ASL imaging showed a significantly positive correlation with f. ASL imaging might hold potential to improve the ability to discriminate MTs from WTs.