• Title/Summary/Keyword: Performance-base

Search Result 3,256, Processing Time 0.029 seconds

Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems

  • Hessabi, Reza Mirza;Mercan, Oya;Ozturk, Baki
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.285-296
    • /
    • 2017
  • Base isolation is a quite practical control strategy for enhancing the response of structural systems induced by strong ground motions. Due to the dynamic effects of base isolation systems, reduction in the interstory drifts of the superstructure is often achieved at the expense of high base displacement level, which may lead to instability of the structure or non-practical designs for the base isolators. To reduce the base displacement, several hybrid structural control strategies have been studied over the past decades. This study investigates a particular strategy that employs Tuned Mass Dampers (TMDs) for improving the performance of base-isolated structures and unlike previous studies, specifically focuses on the effectiveness of this hybrid control strategy in structures that are equipped with nonlinear base isolation systems. To consider the nonlinearities of base isolation systems, a Bouc-Wen model is selected and nonlinear dynamic OpenSees models are used to perform several time-history simulations in time and frequency domains. Through these numerical simulations, the effects of several parameters such as the fundamental period of the structure, dynamic properties of the TMD and isolation systems and properties of the input ground motion on the behaviour of TMD-structure-base isolation systems are examined. The results of this study provide a better insight into the performance of linear shear-story structures with nonlinear base isolators and show that there are many scenarios in which TMDs can still improve the performance of these systems.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Use of VHVl Base Oils for High Performance ATFs

  • Moon, Woo-Sik;Yang, Si-Won
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.120-126
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changed reflecting the design changes of automatic transmissions. The major purpose of these design changes is concentrated upon improvements of both fuel economy and drivability. In order to formulate such high performance ATFs as satisfy those requirements, it is necessary to use high quality base oils like VHVI base oils and PAOs. In this study, the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Frictional characteristics are determined using the SAE No. 2 machine and ATFs are deteriorated under various controlled conditions. Moreover low-temperature fluidity, oxidation stability, and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATFs gives several benefits with respect to low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF

EFFECT OF BASE OILS CHARACTERISTICS ON ATF PERFORMANCE

  • Moon, Woo-Sik;Yang, Si-Won
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.191-197
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changing to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve fuel economy and drivability. The use of special base oils like API Group III and IV base oils has increased in order to formulate high performance ATF. In this study. the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Moreover, low-temperature fluidity. oxidation stability. and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATF has several benefits in low temperature viscosity. oxidation stability and SAE No.2 friction characteristics.

  • PDF

Effects of Base Oils on Performance of Automatic Transmission Fluid (윤활기유가 자동변속기유의 성능에 미치는 영향)

  • 문우식;양시원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.273-279
    • /
    • 2000
  • Until recently performance requirements for automatic transmission fluids have continued to change to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve the fuel economy and easy driving. To meet recent performance requirements fur automatic transmission the needs for special base oils Bike API Group III and IV base oils become larger. In this paper to evaluate the effects of base oils on performance of automatic transmission fluids formulated with API Group I,II,III and IV and Dexron III and Hereon Type additive package, Brookfield viscosity, oxidation test, SAE No.2 friction test and seal compatibility test were examined. From the test we knew that the use of Croup III and IV base oils in ATF has several benefits in low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

WORLD WIDE BASE STOCK TRENDS

  • Henderson, H.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.55-62
    • /
    • 2002
  • Significant changes in the performance requirements of finished lubricants is having a pronounced impact on the quality and manufacturing approach for base stocks, the building block for these products. Separation processing is no longer capable of producing high yields of premium base stocks and is rapidly being replaced with hydroprocessing. Isoparaffins are the most desirable component because of their high Viscosity Index, low pour point and excellent stability. This paper will discuss industry trends and the drive towards higher quality base stocks. Manufacturing options are discussed and examples presented to demonstrate the performance of these premium base stocks.

  • PDF

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

Effect of CrossFit Power Training on TPI OnBaseU Power Test and Golf Performance (크로스핏 파워 트레이닝이 TPI OnBaseU Power Test와 골프 수행력에 미치는 영향)

  • Chang Wook Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.185-195
    • /
    • 2023
  • Objective: The purpose of this study is to improve TPI OnBaseU Power Test and golf performance by conducting CrossFit power training. Method: Three male golf players from University B participated in this study. They had 3 to 4 years of golf experience and participated in 8 weeks of CrossFit power training. Results: OnBaseU Power Test: There was a lot of improvement in Sit up throw (27.9%) and Chest pass (10.58%), but there was not much improvement in Baseline Toss (R5.9, L9.8%) and Vertical Jump (4.1%). Golf shot data: There was a very statistically significant difference in Club speed, Ball speed, and Total Length, which are related to speed, and there was no difference in Club path and Smash factor, which are related to accuracy and posture. Conclusion: CrossFit power training was effective in improving TPI OnBaseU Power Test and golf performance (Club speed, Ball speed, Total Length).

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.