• Title/Summary/Keyword: Performance-Based Design (PBD)

Search Result 60, Processing Time 0.027 seconds

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

Implementation of Performance Based Design Method based on Application of Bayesian Method (Bayesian Method를 적용한 성능기반설계기법(PBD)의 활용)

  • Kim, Jang-Ho;Kim, Kyung-Min;Park, Jeong-Ho;Hong, Jong-Suk;Li, Jing
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.217-220
    • /
    • 2006
  • In this paper Satisfaction Curve has been applied to estimate the material safety by using Bayesian Method based on given parameters which are obtained from experimental results of other researchers. From the results, Bayesian Method is proven to be an available method for safety estimation of material.

  • PDF

The Legal Problems and Improvement in the Performance Based Design of Fire-fighting (성능위주소방설계의 법적문제 및 개선방안)

  • Yi, Jong-Yeong;Baek, Ok-Sun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • The buildings relevant to the law should be designed performance-based necessarily according to "Fire-Fighting System Installation Business Act" amended, January 1. 2009. Performance based design means that building design reflects structure, size, purpose, and building capacity to achieve the most effective design of fire-fighting system. Performance based design has meaning to buildings that it is insufficient to control fire-fighting by previous law-oriented design or inappropriate by uniform design, because of buildings becoming bigger and higher. However, it is difficult to implement the system actually, because laws relevant to fire-fighting prescribe only the object and the required qualifications of performance based design, but they don't have rules to enforce performance based design for specific parts. This study suggests improvements for a desirable implementation of performance based design in legal aspects, by analyzing the current legal regulations related to performance based design.

Estimation of R-factor and Seismic Performance for RC IMRFs using N2 Method (N2 Method를 이용한 RC 중간모멘트 연성골조의 반응수정계수 및 내진성능 평가)

  • 윤정배;이철호;최정욱;송진규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.33-39
    • /
    • 2002
  • Response Modification Factor(R-factor) approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. However R factors were set empirically and simply based on the professional committee consensus on observed performance of building structures during past earthquakes. Consequently some major shortcomings linked to the current R factor approach have been pointed out. Using reinforced concrete intermediate moment-resisting frames(RC IMRFs), an analytical procedure is presented in this paper to establish R factor rationally. To this end, analytical R values were evaluated based on N2 Method and compared with the values recommended by IBC 2000. Overall, the analytical results correlated well with the code values. However the results also revealed that R factor might strongly depend on the system fundamental period. As evidenced by the interstory drift index(IDI) analysis results of this study, current R-factor based(or, Life Safety based) design tends to fail in fulfilling other implicit and hopeful performance objectives such as immediate Occupancy and Collapse Prevention. Performance based design(PBD) appears to be a promising approach to meet the multi level seismic performance objectives assigned to the building structures of nowadays.

A Simplified Procedure for Performance-Based Design

  • Zareian, Farzin;Krawinkler, Helmut
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.13-23
    • /
    • 2007
  • This paper focuses on providing a practical approach for decision making in Performance-Based Design (PBD). Satisfactory performance is defined by several performance objectives that place limits on direct (monetary) loss and on a tolerable probability of collapse. No specific limits are placed on conventional engineering parameters such as forces or deformations, although it is assumed that sound capacity design principles are followed in the design process. The proposed design procedure incorporates different performance objectives up front, before the structural system is created, and assists engineers in making informed decisions on the choice of an effective structural system and its stiffness (period), base shear strength, and other important global structural parameters. The tools needed to implement this design process are (1) hazard curves for a specific ground motion intensity measure, (2) mean loss curves for structural and nonstructural subsystems, (3) structural response curves that relate, for different structural systems, a ground motion intensity measure to the engineering demand parameter (e.g., interstory drift or floor acceleration) on which the subsystem loss depends, and (4) collapse fragility curves. Since the proposed procedure facilitates decision making in the conceptual design process, it is referred to as a Design Decision Support System, DDSS. Implementation of the DDSS is illustrated in an example to demonstrate its practicality.

Ministry of Taxation Tower in Baku, Azerbaijan: Turning Away from Prescriptive Limitations

  • Choi, Hi Sun;Ihtiyar, Onur;Sundholm, Nickolaus
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2020
  • Beginning a few decades ago, Baku, the capital city of Azerbaijan, has experienced a dramatic construction boom that is revitalizing its skyline. The expansive growth looks to uphold the historic past of Baku as a focal point within the Caspian Sea Region while also evoking aspirations for a city of the future. With superstructure complete and interiors progressing, the Ministry of Taxation (MOT) tower is the latest addition to the city, with its stacked cubes twisting above a multi-level podium at the base. Each cube is separated by column-free green roof terraces, creating unique parametric reveals of the developing surroundings. Aside from MOT's stunning shape, its geolocation resulted in unusually high wind loads coupled with high seismic hazards for a tower of its height. In addition, limitations on possible structural systems required stepping away from a typical prescriptive code-based approach into one that utilized Performance-Based Design (PBD) methods. This paper presents the numerous structural challenges and innovations that allowed the design of a new icon to be realized.

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.

Application of ETA(Event Tree Analysis) to the Performance-Based Design of fire protection (성능위주설계를 위한 ETA 기법 활용 고찰)

  • Kim, H.B.;Lee, S.K.;Song, D.W.;Kim, K.S.;Kim, J.H.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.454-457
    • /
    • 2011
  • 본 연구에서는 소방시설의 성능위주의설계를 수행하기 위하여 ETA(Event Tree Analysis) 기법을 적용하는 방안을 고찰하였다. ETA기법에서는 화재시나리오를 사건(Event)의 인과관계로 된 각 단계의 사건으로 구성한다. 본 연구에서는 ETA에서 구성된 시나리오에 따른 심각도를 화재시뮬레이션과 피난 시뮬레이션을 통한 수행으로 사망자수를 도출하는 방안을 적용하였고, 각 시나리오의 빈도(확률)은 FTA(Fault Tree Analysis) 기법을 적용하여 분기 확률을 도출하도록 하였다. ETA에서 도출한 사망자수와 빈도를 이용하여 F-N 커브를 작성하여 위험도를 평가하여 소방설계의 보완 및 대책을 수립하는 방안을 제시하였다.

  • PDF

Development of Concrete Material Models for Performance-Based Design Code (성능기반 설계기준 작성을 위한 콘크리트 재료모델의 개발)

  • Kim, Jee-Sang;Lee, Kwang-Myung;Choi, Yeon-Wang;Jung, Sang-Hwa;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.975-978
    • /
    • 2008
  • To strengthen the technological competitiveness of the construction market in Korea, researches have been performed to replace the prescriptive design codes (PD) to the performance-based ones (PBD). As one of the basic requirements for PBDs, development of the optimized concrete material models for domestic applications have been tried by comparing and verifying the pre-existing models with the observations and quality evaluations of ready mixed concretes that are used in the domestic market. This paper shows the summary of the present state of the research progress in the areas of compressive strength and elastic modulus.

  • PDF

Performance based design approach for multi-storey concentrically braced steel frames

  • Salawdeh, Suhaib;Goggins, Jamie
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.749-776
    • /
    • 2016
  • In this paper, a Performance Based Design (PBD) approach is validated for multi-storey concentrically braced frame (CBF) systems. Direct Displacement Based Design (DDBD) procedure is used and validated by designing 4- and 12-storey CBF buildings. Nonlinear time history analysis (NLTHA) is used to check the performance of the design methodology by employing different accelerograms having displacement spectra matching the design displacement spectrum. Displacements and drifts obtained from NLTHA are found to fall within the design displacement limits used in the DDBD procedure. In NLTHA, both tension and compression members are found to be resisting the base shear, $F_b$, not only the tension members as assumed in the design methodology and suggested by Eurocode 8. This is the reason that the total $F_b$ in NLTHA is found to be greater than the design shear forces. Furthermore, it is found that the average of the maximum ductility values recorded from the time history analyses for the 4-and 12-storey buildings are close to the design ductility obtained from the DDBD methodology and ductility expressions established by several researchers. Moreover, the DDBD is compared to the Forced Based Design (FBD) methodology for CBFs. The comparison is carried out by designing 4 and 12-storey CBF buildings using both DDBD and FBD methodologies. The performance for both methodologies is verified using NLTHA. It is found that the $F_b$ from FBD is larger than $F_b$ obtained from DDBD. This leads to the use of larger sections for the structure designed by FBD to resist the lateral forces.