• Title/Summary/Keyword: Performance verification device

Search Result 162, Processing Time 0.017 seconds

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.