• Title/Summary/Keyword: Performance parameter

Search Result 4,770, Processing Time 0.033 seconds

Design of Processor Lever Controller for Electric Propulsion System of Naval Ship (전기추진 함정용 프로세서 레버 제어기 설계)

  • Shim, Jaesoon;Lee, Hunseok;Jung, Sung-Young;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.134-145
    • /
    • 2021
  • It is common to optimize the propulsion control system through a so-called tuning process that modifies the parameter values of the propulsion control software during a ship commissioning. However, during this process, if the error of the initial setting value is large, the tuning time may take too long, or the propulsion equipment can be seriously damaged. Therefore, we conducted research on the design of a propulsion controller that applied a Processor lever controller even for inexperienced people with relatively little experience in tuning propulsion control software to be able to reduce the tuning time while protecting the propulsion system. Through simulation, by comparing the execution result of propulsion control lever commands through the PI controller without applying the Processor lever controller. We analyzed the improvement of the Overshoot and propulsion performance. The simulation results showed that the safety of the propulsion system increased because Overshoot of approximately 9.74%, which occurred when the Processor lever function was not applied.

LMU Design Optimization for the Float-Over Installation of Floating Offshore Platforms (부유식 해양구조물의 플로트오버 설치용 LMU 최적설계)

  • Kim, Hyun-Seok;Park, Byoungjae;Sung, Hong Gun;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A Leg Mating Unit (LMU) is a device utilized during the float-over installation of offshore structures that include hyperelastic pads and mating part. The hyperelastic pads absorb the loads, whereas the mating part works as guidance between topside and supporting structures during the mating sequence of float-over installation. In this study, the design optimization of an LMU for the float-over installation of floating-type offshore structures is conducted to enhance the performance and to satisfy the requirements defined by classification society regulations. The initial dimensions of the LMU are referred to the dimensions of those used in fixed-type float-over installation because only the location and the number of LMUs are known. The two-parameter Mooney-Rivlin model is adopted to describe the hyperelastic pads under given material parameters. Geometric variables, such as the thickness, height, and width of members, as well as configuration variables, such as the angle and number of members, are defined as design variables and are parameterized. A sampling-based design sensitivity analysis based on latin hypercube sampling method is performed to filter the important design variables. The design optimization problem is formulated to minimize the total mass of the LMU under maximum von Mises stress and reaction force constraints.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Characteristics of KOMPSAT-3A Key Image Quality Parameters During Normal Operation Phase (정상운영기간동안의 KOMPSAT-3A호 주요 영상 품질 인자별 특성)

  • Seo, DooChun;Kim, Hyun-Ho;Jung, JaeHun;Lee, DongHan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1493-1507
    • /
    • 2020
  • The LEOP Cal/Val (Launch and Early Operation Phase Calibration/Validation) was carried out during 6 months after KOMPSAT-3A (KOMPSAT-3A Korea Multi-Purpose Satellite-3A) was launched in March 2015. After LEOP Cal/Val was successfully completed, high resolution KOMPSAT-3A has been successfully distributing to users over the past 8 years. The sub-meter high-resolution satellite image data obtained from KOMPSAT-3A is used as basic data for qualitative and quantitative information extraction in various fields such as mapping, GIS (Geographic Information System), and national land management, etc. The KARI (Korea Aerospace Research Institute) periodically checks and manages the quality of KOMPSAT-3A's product and the characteristics of satellite hardware to ensure the accuracy and reliability of information extracted from satellite data of KOMPSAT-3A. To minimize the deterioration of image quality due to aging of satellite hardware, payload and attitude sensors of KOMPSAT-3A, continuous improvement of image quality has been carried out. In this paper, the Cal/Val work-flow defined in the KOMPSAT-3A development phase was illustrated for the period of before and after the launch. The MTF, SNR, and location accuracy are the key parameters to estimate image quality and the methods of the measurements of each parameter are also described in this work. On the basis of defined quality parameters, the performance was evaluated and measured during the period of after LEOP Cal/Val. The current status and characteristics of MTF, SNR, and location accuracy of KOMPSAT-3A from 2016 to May 2020 were described as well.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation (Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.251-263
    • /
    • 2022
  • This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm (머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측)

  • Kim, Na-eun;Han, Hee-sun;Arulmozhi, Elanchezhian;Moon, Byeong-eun;Choi, Yung-Woo;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry's yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of 'Seolhyang' (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.

Validity of a Simulated Practical Performance Test to Evaluate the Mobility and Physiological Burden of COVID-19 Healthcare Workers Wearing Personal Protective Equipment (COVID-19 감염병 대응 의료진용 개인보호복의 동작성 및 생리적 부담 평가를 위해 개발된 모의 작업 프로토콜의 타당도)

  • Kwon, JuYoun;Cho, Ye-Sung;Lee, Beom Hui;Kim, Min-Seo;Jun, Youngmin;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.655-665
    • /
    • 2022
  • This study evaluated the validity of a newly developed mobility protocol examining the comfort functions and requirements of personal protective equipment (PPE) for COVID-19 healthcare workers. Eight males (age: 24.7 ± 3.0 y, height: 173.4 ± 2.3 cm, and body weight 69.9 ± 3.7 kg) participated in the following three PPE conditions: (1) Plastic gown ensemble, (2) Level D ensemble, and (3) Powered air purifying respirator (PAPR) ensemble. The mobility protocol consisted of 10 different tasks in addition to donning and doffing. The 10 tasks were repeated twice at an air temperature of 25oC with 74% RH. The results showed significant differences among the three PPE conditions in mean skin temperature, local skin temperatures (the forehead, thigh, calf, and foot), clothing microclimate (the chest and back), thermal sensation, thermal comfort, and humidity sensation, while there were no significant differences in heart rate or total sweat rate. At rest, the subjects felt less warm and more comfortable in the PAPR than in the Level D condition (P<0.05). However, subjective perceptions in the PAPR and Level D conditions became similar as the tasks progressed and mean skin and leg temperature became greater for the PAPR than the Level D condition (P<0.05). An interview was conducted just after completing the mobility test protocol, and suggestions for improving each PPE item were obtained. To sum up, the mobility test protocol was valid for evaluating the comfort functions of PPE for healthcare workers and obtaining requirements for improving the mobility of each PPE item.

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices (임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력)

  • Cho, Jin Sik;Kwon, Oh Bin;Jeon, Sung Joung;Lee, Min Young;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.570-588
    • /
    • 2022
  • We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

Effect of γ-Aminobutyric Acid and Probiotics on the Performance, Egg Quality and Blood Parameter of Laying Hens Parent Stock in Summer (γ-Aminobutyric Acid 및 생균제 급여가 여름철 산란 종계의 생산성, 계란 품질 및 혈액 성상에 미치는 영향)

  • Ji Heon, Kim;Yoo Don, Ko;Ha Guyn, Sung
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.239-246
    • /
    • 2022
  • This study was conducted to investigate the effects of dietary γ-aminobutyric acid (GABA) and a probiotic mixture on egg production and quality, blood parameters, and stress levels (corticosterone) in Hy-Line parent stock during summer in Korea. A total of 105 Hy-Line parent stock aged 24 weeks were randomly divided into three groups, each containing thirty-five birds: control, γ-aminobutyric acid (GABA), and probiotics (1 × 108/g Bacillus licheniformis, 1 × 107/g Lactobacillus plantarum, and 1 × 107/g Corynebacterium butyricum). The hens were fed a diet containing 50 ppm GABA or 0.1% probiotics for 6 weeks. Compared with the control group, the hen-day egg production, egg mass, and feed conversion ratio over the total period were significantly higher in the probiotic group (P<0.05). In contrast no significant differences were detected among groups with respect to egg weight, albumen height, Haugh units, yolk color, shell thickness or shell strength. Similarly, no significant difference were observed among groups with regards to biochemical profile (total cholesterol, triglyceride, glucose, total protein, aspartate aminotransferase, alanine aminotransferase, albumin, and inorganic phosphorus). However, compared with the control group, we did detect significant reductions in corticosterone levels in the GABA and probiotics groups (P<0.05). On the basis of our findings in this study, it would appear that dietary GABA and probiotics can alleviate heat stress in Hy-Line parent stock, with probiotics in particular being found to promote significant improvements in the hen-day egg production, egg mass, and feed conversion of laying hens during the summer season in Korea.