• Title/Summary/Keyword: Performance of Optimization

Search Result 5,486, Processing Time 0.034 seconds

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

A Study on Improvement in the Resistance Performance of Planing hulls by Hull Shape Optimization (고속활주선의 선형 최적화를 통한 저항성능 개선에 관한 연구)

  • Kim, Sunbum
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes the method of hull shape optimization to improve the resistance performance of planing hulls when a reference hull shape and its principal dimensions are given. First, the planing hull of precedent research is adopted as the reference hull and an optimization problem is formulated by defining hull shape parameters. The search space of this research is discretized for computing cost and DPSO(Discrete binary version of Particle Swarm Optimization) method is used to solve the optimization problem. As the result of optimization, the decrease of resistance is confirmed from the comparison between the reference hull's and the modified hull's planing performance from computational results.

UAV Performance Improvement Using Integrated Analysis and Design Optimization Technology (통합 해석 및 설계 최적화 기술을 이용한 무인기 성능 향상 연구)

  • Kim, Jimin;Nguyen, Nhu Van;Shu, Jung-Il;Maxim, Tyan;Lee, Jae-Woo;Kim, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • This paper describes the design optimization of Unmanned Aerial Vehicles(UAVs). An optimization framework has been developed and implemented for the conceptual design of UAVs. An integrated design analysis program was developed with several analysis modules such as propulsion, performance, mission, weight, and stability and control. A UAV configuration design optimization was performed by implementing the integrated analysis to enhance the endurance of UAVs. A SQP optimizer was utilized to build an optimization module for this program and sensitivity analysis was performed to determine the trends of shape variables for developing optimization objective. In conclusion, the results indicate that the resulting optimized UAVs configurations show performance improvements over the baseline design and reliable analysis results.

Optimization of H.263 Encoder on a High Performance DSP (고성능 DSP 에서의 H.263 인코더 최적화)

  • 문종려;최수철;정선태
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • Computing environments of Embedded Systems are different from those of desktop computers so that they have resource constraints such as CPU processing, memory capacity, power, and etc.. Thus, when a desktop S/W is ported into embedded systems, optimization should be seriously considered. In this paper, we investigate several S/W optimization techniques to be considered for porting H.263 encoder into a high performance DSP, TMS320C6711. Through experiments, it is found that optimization techniques employed can make a big performance improvement.

  • PDF

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

Optimization of trusses under uncertainties with harmony search

  • Togan, Vedat;Daloglu, Ayse T.;Karadeniz, Halil
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.543-560
    • /
    • 2011
  • In structural engineering there are randomness inherently exist on determination of the loads, strength, geometry, and so on, and the manufacturing of the structural members, workmanship etc. Thus, objective and constraint functions of the optimization problem are functions that depend on those randomly natured components. The constraints being the function of the random variables are evaluated by using reliability index or performance measure approaches in the optimization process. In this study, the minimum weight of a space truss is obtained under the uncertainties on the load, material and cross-section areas with harmony search using reliability index and performance measure approaches. Consequently, optimization algorithm produces the same result when both the approaches converge. Performance measure approach, however, is more efficient compare to reliability index approach in terms of the convergence rate and iterations needed.

Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System (하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계)

  • Jang, Seong-Dae;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

THE GLOBAL OPTIMAL SOLUTION TO THE THREE-DIMENSIONAL LAYOUT OPTIMIZATION MODEL WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.313-321
    • /
    • 2004
  • In this paper we study the problem of three-dimensional layout optimization on the simplified rotating vessel of satellite. The layout optimization model with behavioral constraints is established and some effective and convenient conditions of performance optimization are presented. Moreover, we prove that the performance objective function is locally Lipschitz continuous and the results on the relations between the local optimal solution and the global optimal solution are derived.

Analysis of Open-Source Hyperparameter Optimization Software Trends

  • Lee, Yo-Seob;Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.56-62
    • /
    • 2019
  • Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares.