• Title/Summary/Keyword: Performance of Optimization

Search Result 5,489, Processing Time 0.036 seconds

Optimization Method for a Coupled Design, Considering Robustness (강건성을 고려한 연성설계의 최적화 방법)

  • Kang, Dong-Heon;Song, Byoung-Cheol;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2008
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

A Study on the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화에 관한 연구)

  • Lee, Yeong-Sin;Ryu, Chung-Hyeon;Myeong, Chang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1444-1451
    • /
    • 2001
  • The evolutionary structural optimization(ESO) method has been under continuous development since 1992. The bidirectional evolutionary structural optimization(BESO) method is made of additive and removal procedure. The BESO method is very useful to search the global optimum and to reduce the computational time. This paper presents the ranked bidirectional evolutionary structural optimization(R-BESO) method which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO.

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Graph based KNN for Optimizing Index of News Articles

  • Jo, Taeho
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • This research proposes the index optimization as a classification task and application of the graph based KNN. We need the index optimization as an important task for maximizing the information retrieval performance. And we try to solve the problems in encoding words into numerical vectors, such as huge dimensionality and sparse distribution, by encoding them into graphs as the alternative representations to numerical vectors. In this research, the index optimization is viewed as a classification task, the similarity measure between graphs is defined, and the KNN is modified into the graph based version based on the similarity measure, and it is applied to the index optimization task. As the benefits from this research, by modifying the KNN so, we expect the improvement of classification performance, more graphical representations of words which is inherent in graphs, the ability to trace more easily results from classifying words. In this research, we will validate empirically the proposed version in optimizing index on the two text collections: NewsPage.com and 20NewsGroups.

Pareto fronts-driven Multi-Objective Cuckoo Search for 5G Network Optimization

  • Wang, Junyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2800-2814
    • /
    • 2020
  • 5G network optimization problem is a challenging optimization problem in the practical engineering applications. In this paper, to tackle this issue, Pareto fronts-driven Multi-Objective Cuckoo Search (PMOCS) is proposed based on Cuckoo Search. Firstly, the original global search manner is upgraded to a new form, which is aimed to strengthening the convergence. Then, the original local search manner is modified to highlight the diversity. To test the overall performance of PMOCS, PMOCS is test on three test suits against several classical comparison methods. Experimental results demonstrate that PMOCS exhibits outstanding performance. Further experiments on the 5G network optimization problem indicates that PMOCS is promising compared with other methods.

A Continuous Optimization Algorithm Using Equal Frequency Discretization Applied to a Fictitious Play (동일 빈도 이산화를 가상 경기에 적용한 연속형 최적화 알고리즘)

  • Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • In this paper, we proposed a new method for the determination of strategies that are required in a continuous optimization algorithm based on the fictitious play theory. In order to apply the fictitious play theory to continuous optimization problems, it is necessary to express continuous values of a variable in terms of discrete strategies. In this paper, we proposed a method in which all strategies contain an equal number of selected real values that are sorted in their magnitudes. For comparative analysis of the characteristics and performance of the proposed method of representing strategies with respect to the conventional method, we applied the method to the two types of benchmarking functions: separable and inseparable functions. From the experimental results, we can infer that, in the case of the separable functions, the proposed method not only outperforms but is more stable. In the case of inseparable functions, on the contrary, the performance of the optimization depends on the benchmarking functions. In particular, there is a rather strong correlation between the performance and stability regardless of the benchmarking functions.

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

Structural Design of a Front Lower Control Arm Considering Durability (내구성을 고려한 하부 컨트롤 암의 구조설계)

  • Park, Han-Seok;Kim, Jong-Kyu;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.