• Title/Summary/Keyword: Performance of $CO_2$ extinguishing system

Search Result 12, Processing Time 0.018 seconds

A Study on the Direct Discharge Test for Verifying Design Concentration and Soaking Time for CO2 Fire Extinguishing System of Total Flooding (전역방출방식 CO2 소화설비의 설계농도 및 유지시간 검증을 위한 직접방사실험에 관한 연구)

  • Lee, Se-Myeoung;Moon, Sung-Woong;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.15-23
    • /
    • 2012
  • Indirect Test Method is often used instead of direct test method in test method for extinguishing performance of $CO_2$ extinguishing facility because of high cost, environment problems and difficulties of procedure. But in the danger facilities for a unit of nation, such as a petrochemical plant, a nuclear power plant, or etc. is better to verify the performance of the extinguishment through direct discharge test. In $CO_2$ extinguishing system for total flooding system installed in dangerous facilities in Korea, each protected area in surface fire and deep-seated fire had selected and verified of extinguishing performance of $CO_2$ extinguishing facilities. To get recognized as extinguishing performance, discharged $CO_2$ concentration to protected area should be equivalence with design concentration standards (NFSC and NFPA). The Design Concentration means that $CO_2$ extinguishing agent is considerate of concentration for percentage of allowance (20 %) from extinguishing concentration which available to control of flame. As test result, surface fire and deep seated fire in protected area is obtained $CO_2$ design concentration and maintained design concentration more than 20 minutes as deep-seated fire. Through this study, we introduced direct discharging test method and decision method. And furthermore, especially in the dangerous facilities as a unit of Nation, we suggested necessity about reliability of extinguishing facilities to use direct test method.

A Study on Percent Agent in Pipe as a Criterion to Evaluate Limitations and Performance of Gaseous Fire Extinguishing Systems (가스계 소화설비의 제한사항 및 성능평가를 위한 배관 내 약제비율에 관한 연구)

  • Son, Bong-Sei;Kim, Hee-Woo
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This study aims to investigate, review, and summarize the definition, development, and applications of "percent agent in pipe", "percent of agent in pipe" which is used as a key factor in testing and evaluating the performance of gaseous fire extinguishing agents, including Halon 1301 and $CO_2$. This study also analyzes and compares the local and international standards on testing and evaluating the performance of gaseous fire extinguishing systems, as well as the results of system performance tests conducted as a part of performance evaluation and approval programs for gaseous fire extinguishing systems, especially, Korean Gaseous Fire Extinguishing System Performance Approval Program called KFI Approval. Percent agent in pipe was defined first in NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems, dating back to the 1970's. After the phaseout of Halon 1301 systems in 1994 in the developed countries, the percent agent in pipe has been widely used in Halon 1301 alternative clean agent fire extinguishing systems, both halocarbon clean agent systems and inert gas clean agent systems, as an essential criterion to assure the system design accuracy, determine the limitations and performance of a system, and to predict the system performance results accurately, especially, in association with their system flow calculations. Underwriters Laboratories has their own standards such as UL 2127 and 2166 applying percent agent in pipe in testing and evaluating the performance of clean agent fire extinguishing systems. As a part of a system performance test and approval program called KFI Approval System, Korea also has started to apply the percent agent in pipe as a key factor to test, evaluate, and approve the performance of gaseous fire extinguishing systems, including both high and low pressure $CO_2$ systems, from the early 2000's. This study outlines and summarizes the relevant UL and KFI standards and also describes the actual test resultant data, including the maximum percents of agent in pipe for gaseous fire extinguishing systems. As evidenced in lots of tests conducted as a part of the system performance test and approval programs like KFI Approval System, it has been proven that the percent agent in pipe may work as a key factor in testing, evaluating, and determining the limitations and performance of gaseous fire extinguishing systems, especially compared with the hydraulic flow calculations of computer design programs of gaseous fire extinguishing systems, and will remain as such in the future. As one thing to note, however, there are some difficulties in using the unified percent agent in pipe to determine the maximum lengths of pipe networks for gaseous fire extinguishing systems, because the varying definitions used by some of the flow calculations (not in accordance with NFPA 12A definition) make it impossible to do any direct comparison of pipe lengths based on percent agent in pipe.

The Report on Test Results of CO Fire Extinguishing System ($CO_2$ 소화설비 구성부품 성능시험보고)

  • Kim, Gi-Ok;Lee, Chan-Ju;An, Byeong-Ho
    • Fire Protection Technology
    • /
    • s.14
    • /
    • pp.5-12
    • /
    • 1993
  • This report is explained about test results of carbon dioxide extinguiching system components and pack-age type system (Kits) for automatic fire extinguishing system. A carbon dioxide system may be used to protect one or more hazards or hazards by menas of directional valves. Package system shall be installed to protect hazards within the limitations. The testing program was progressed by three items, external oppearance test, performance test and Total Flooding Fire Extinguishing System test. The object of this report is present the problem which apperar from the analysis of test results.

  • PDF

The Effects of the Area of Openings on the Performance of a $CO_2$ Extinguishing System -The CFD Simulations of the Oil Surface Fire in a Machine Room- (개구부 면적이 $CO_2$ 소화설비의 소화성능에 미치는 영향 -기계실 석유 표면화재의 CFD simulations-)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Park, Jong-Tack
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Carbon dioxide($CO_2$) agent, which has more safely extinguished fire than any other gaseous fire extinguishing agents, has been widely used in various protected enclosures and types of fires. According to the concept of performance-based design(PBD). $CO_2$ extinguishing system to be designed is needed to be evaluated for the performance of fire suppression with possible fire scenarios in an enclosure. In this paper, CFD simulations were carried out to study the effects of opening area on the performance of $CO_2$ extinguishing system and the flow characteristics in the machine room of $100m^3$ in which kerosene spill fire happened. This study showed that time of fire suppression increased linearly in proportion to the size of opening area, and fires for each model were completely suppressed prior to the end of discharge of $CO_2$ agent. It was shown that mass flow rate through opening was influenced by the combined effects of heat release rate of fire and discharge of $CO_2$ agent. After $CO_2$ agent was completely discharged, oxygen concentrations in enclosures for each model were lower than the limit concentration of combustion.

Applicability of CO2 Extinguishing System for Ships (질식사고 방지용 CO2 소화설비의 선박 적용성)

  • Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.294-300
    • /
    • 2017
  • The offshore installations and ships are the structures most likely to be exposed to hazards such as hydrocarbon fire and/or explosion. Developing proactive measures to prevent the escalation of such events thus requires detailed knowledge of the related phenomena and their consequences. $CO_2$ extinguishing systems are extensively used for fire accidents of on-and offshore installations because of outstanding performance and low cost. There is, however, the risk of carbon dioxide system which enumerates many of the fatalities by suffocation associated with industrial fire protection requirements. Therefore, the aim of this study is to perform the prediction of fire suppression characteristics of the carbon dioxide system in realistic enclosed compartment area of ships and propose $CO_2$ extinguish fire fighting system for preventing suffocation accidents during fire fighting. According to CFD calculations, it can be observed and assessed that various fire profiles with $CO_2$ and $O_2$ mole fraction in the target enclosed compartment area are applicable within the proposed system. Additionally, the design of fire safety system of ships and offshore installations can utilize ventilation system and/or layout arrangement through the proposed system.

A Study on the Development of Fire Extinguishing Agent and Extinguishing System for ESS Fire (ESS 화재전용 소화약제 및 소화시스템 개발에 관한 연구)

  • Lee, Yeon-Ho;Lee, Joo-Hyung;Kim, Soo-Jin;Chon, Sung-Ho;Choi, Byoung-Chul;Oh, Seung-Ju;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This paper presents a study on the development of a fire extinguishing agent and extinguishing system for an energy storage system (ESS) fire. The fire extinguishing agent designed to extinguish an ESS fire is a highly permeable fire extinguisher that reduces the surface tension and viscosity while bringing about cooling action. This is the main extinguishing effect of this type of wetting agent, which displays the characteristics of fire extinguishing agents used for penetrating the battery cells inside the ESS module. For the fire extinguishing system, a local application system was designed to suppress fire on a rack-by-rack basis. A 360° rotating nozzle was inserted into the rear hall of the ESS module, and general nozzles were installed in the rack to maximize the fire extinguishing effect. The fire extinguishing agent was strongly discharged by virtue of the gas release pressure. Experiments on fire suppression performance with ESS module 1 unit and module 3 units showed that all visible flames were extinguished in 8 s and 9 s, respectively, by the fire extinguishing agent. In addition, based on confirming reignition for 600 s after the fire extinguishing agent was exhausted, it was confirmed that the ESS fire was completely extinguished without reignition in all fire suppression performance experiments.

Characteristics of Protein Foam Agent by Stabilizer on the Ship Fire Extinguishment (선박화재 적용 단백포 소화약제의 안정제에 따른 소화특성)

  • Lee, Eungwoo;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • Onboard fire extinguishing system is important to protect cargo and human lives and every oil tanker has foam type fire extinguishing system. Because of environmental problem, agent which contains materials such as Perfluorinated compounds are regulated and the development of the environmental friendly agent is required. The protein foam has less environmental pollution problem and has an excellent fire extinguish performance to oil fire. In the research, bivalency metal salts were added as stabilizer to increase fire resistance and stability of the foam. Ferrous sulfate, Iron chloride and Nickel chloride were used and to adjust to vessel, sea water was applied. As a stabilizer increased, the expansion ratio was raised. However 25% drainage time was decreased over 2.0 wt.% which is knowable that the foam brokes easily. The amount of generated foam was measured to check fluidity of foam and it appeared that when $FeSO_4$ 1.2 wt.% was added, the amount of generated foam reached large and also the 25% drainage time was high. To evaluate the fire extinguishing performance for oil fire, the small scale oil fire test was executed. When $FeSO_4$ 1.2 wt.% was added, fire extinguishing time was in its shortest which informs fluidity of foam and stability are important factors on fire extinguishing efficiency.

A Numerical Study to Analyze Safety of Pressure Leakage Monitoring System of Gas Extinguishing Agent (가스소화약제 압력누기감시장치의 안전성 분석을 위한 수치적 연구)

  • Go, A-Ra;Lim, Dong-Oh;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • While the demand for the gas system fire extinguishers increases every year, there are insufficient safety measures for assessing the extinguishing performance, such as system safety and reliability in the preparation of increasing demand, which has emerged as a social problem. One of the most critical causes of accidents occurring with the gas extinguishing system is pressure leakage from the extinguishing agent storage container. This is considered to be one of the critical factors on which the success of fire suppression depends. In this study, its safety measure was studied, Because it was deemed urgently necessary. The newly developed pressure leakage monitoring system is a system monitoring storage condition, pressure, leakage and discharge of the storage container related to agent concentration, which is one of the critical factors for fire suppression. This was developed to be applicable to the $CO_2$ and HFC-23 systems. Therefore, for structural safety analysis, the safety performance was verified by the fluid structure coupling analysis of the safety problems that may occur when the pressure leakage monitoring system is applied to the gas fire extinguisher. For analysis programs, the FloEFD program from Mentor Graphics was used for computational fluid dynamics analysis and ABAQUS from Dassault Systems was used for structural analysis. From the result of numerical analysis, the structure of $CO_2$ did not develop plastic deformation and its safety was verified. However, plastic deformation and deviation issue occurred with the HFC-23 monitoring system and therefore verified the structural safety of pressure leakage monitoring system by data obtained from redesigning and adjusting the condition of numerical interpretation three times.

Method for Preventing Asphyxiation Accidents by a CO2 Extinguishing System on a Ship (선박 내 CO2 소화설비에 의한 질식사고 방지 기법)

  • Ha, Yeon-Chul;Seo, Jung-Kwan;Hwang, Jun-Ho;Im, Kichang;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.57-64
    • /
    • 2015
  • Carbon dioxide extinguishing systems are broadly used for onshore and offshore fire accidents because of excellent performance and low cost. However, there is risk with carbon dioxide systems, which have caused many injuries and deaths by suffocation associated with industrial and marine fire protection applications. In this study, a numerical analysis was performed to predict the fire suppression characteristics of a carbon dioxide system in the compressor room of ships. A double protection safety system is suggested to prevent suffocation accidents from carbon dioxide extinguishing systems. Four scenarios were selected to study the variation of the heat release rate, maximum temperature, a $CO_2$ and $O_2$ mole fraction, and fire suppression characteristics with the carbon dioxide system. The importance of proper design is suggested for a ventilation system in the compressor room of ships.

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.