• Title/Summary/Keyword: Performance isolation

Search Result 1,070, Processing Time 0.03 seconds

Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation (제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.

A Fault Isolation Filter Design Using Left Eigenstructure Assignment Scheme

  • Choi, Jae-Weon;Lee, Shi-Bok;Lee, Dae-Young;Park, Un-Sik;Suh, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.583-589
    • /
    • 2000
  • This paper presents a novel fault isolation filter design method using left eigenstructure assignment scheme proposed by the first author et al. The proposed method shows good performance of fault isolation with an exact eigenstructure assignment and guarantees that the corrupted ${\gamma}$ faults can be isolated simultaneously when the number of available output measurements are equal to or larger than (${\gamma}+1$). A numerical example for the fault isolation filter is also included.

  • PDF

On the Optimization of the Coaxial-Conical-Radial Type Power Divider/Combiner and the Improvement of Isolation Characteristics (동축-원추-방사형 전력분할/합성기의 중심부 높이에 따른 최적설계와 아이솔레이션 특성 향상)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1727-1732
    • /
    • 2011
  • In order to realize a high performance(low loss, high isolation) microwave power divider/combiner, we have designed the power combiner/divider precisely in accordance with the different hight of central part. In the case of the high central part of the hight of $h_r$=10.2, a compensating part of the conical line is inserted in the conical conversion transmission line, and in the case of low central part of the hight of $h_r$=5.0, the conical conversion transmission line is remodeled into the 2-stage bend structure. In both case, the reflection characteristics are improved to 30dB over the operating frequency range of 5GHz bandwidth. A resistance is inserted between the peripheral ports so as to try to improve the isolation characteristics of the device. For the 16-divider/combiner, the isolation characteristics are improved to 10dB over the operating frequency range of 5GHz bandwidth.

Performance of multi-storey structures with high damping rubber bearing base isolation systems

  • Karabork, Turan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.399-410
    • /
    • 2011
  • Base isolation, having quite simple contents, aims to protect the buildings from earthquake-induced damages by installing structural components having low horizontal stiffness between substructure and superstructure. In this study, an appropriate base isolation system for 2-D reinforced concrete frame is investigated. For different structural heights, the structural systems of 2, 3 and 4 bays are modeled by applying base isolation systems and results are compared with conventional structural systems. 1999 Marmara earthquake data is used for applying the model by time history method in SAP2000 package. Results of various parameters such as base shear force, structure drift ratio, structure period and superstructure acceleration are discussed for all models.

Small-Size and High-Isolation MIMO Antenna for WLAN

  • Jin, Zhe-Jun;Lim, Jong-Hyuk;Yun, Tae-Yeoul
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.114-117
    • /
    • 2012
  • A small-sized ($15mm{\times}30mm$) planar monopole MIMO antenna that offers high-isolation performance is presented in this letter. The antenna is miniaturized using inductive coupling within a meander-line radiator and capacitive coupling between a radiator and an isolator. High isolation is achieved by a T-shaped stub attached to the ground plane between two radiators, which also contributes to the small size using a folded structure and the capacitive coupling with radiators. The proposed antenna operates for the WLAN band within 2.4 GHz to 2.483 GHz. The measured isolation (S21) is about -30 dB, and the envelope correlation coefficient is less than 0.1.

Polarization Diversity Antenna for Receiving Traffic Information Contents in WiBro System (교통정보 컨텐츠 수신을 위한 WiBro용 편파 다이버시티 안테나)

  • Jung, Byung-Woon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.56-61
    • /
    • 2008
  • Diversity antenna system against multi-fading environment is strongly required for WiBro service of vehicle. In general, high isolation performance between antennas leads to good diversity gain. In this paper, a polarization diversity antenna is presented, which has orthogonal polarizations and good isolation characteristic. In addition, by simulation and measurement, it is certified that HWLLA (Half Wave Length Loaded Antenna) improves polarization purity on common ground. In isolation between two antennas, HWLLA can provide better isolation over 12dB than conventional PIFA (Planar Inverted F Antenna).

  • PDF

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

Seismic Performance Evaluation of Seismic Isolation Device with Double Slip Friction Surface (이중 슬립마찰면을 이용한 면진장치의 면진성능평가)

  • Son, Su-Won;Kwon, Jeong-Ho;Kim, Jung-Gon;Jung, Yong-Gyu;Hwang, Eun-Dong
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.712-722
    • /
    • 2020
  • Purpose: The damage from earthquakes with a magnitude of 5.0 or greater Korea has increased in South Korea. When a earthquake occurs, internal facilities and electric equipment besides urban structures will be damaged. Thus, in this paper, an earthquake-induced seismic isolation device with double slip fiction surfaces which can reduce the damage of electric power equipment such as distribution panel and then the seismic performance was evaluated. Method: To evaluate the seismic performance shaking table test was performed, a seismic performance comparison was performed according to the presence or absence of a seismic isolation device. The attenuation effect of the seismic isolation device are analyzed by comparing response acceleration and displacement for different frequencies and acceleration levels. Result: As a result of the test, the acceleration amplification was up to 42% less than when the seismic isolation device was installed in comparison to the other case without the seismic device. This is believed that the amplification energy has reduced because the displacement between the double slip friction surfaces of the seismic device play a role in dissipating the seismic energy. Conclusion: The seismic device with double slip friction surfaces has a greater earthquake attenuation effect in strong earthquakes than in weak ones, so the greater the frequency, the better the earthquake attenuation effect. Therefore, it is judged that earthquake energy can be decreased by applying to electric equipment such as distribution panels.

Examination on Active Pneumatic Vibration Isolation Table with Moving Masses on It by Time Delay Control (이동 질량을 포함하는 능동형 공압제진대에 대한 시간지연제어기법의 적용 검토)

  • Shin, Yun-Ho;Moon, Seok-Jun;Chung, Jung-Hoon;Kim, Byung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.858-867
    • /
    • 2011
  • As applying an active control technique to a pneumatic vibration isolation system, the settling time for the payload excitation could be remarkably reduced as well as the improvement of isolation performance for the ground vibration. Some previous researches were dealt with the settling time through the simulation or experiment but, the discussion on the simulation or experimental results including moving parts, such as a XY-stage, on the isolation table rarely exists. As considering the moving part, the dynamic model could be time varying system and in such a case the force imposed on pneumatic vibration isolation table could be described by inertial forces of moving parts according to Newton's 3rd law, the action and reaction law. In this paper, the simulation procedure of the 3-DOF active pneumatic vibration isolation system including moving parts by TDC(time delay control) technique is proposed and the effectiveness through simulation results are also shown.