• Title/Summary/Keyword: Performance index(PI)

Search Result 66, Processing Time 0.03 seconds

Properties of Electrical Performance on Stator Coil of Traction Motor by Accelerated Test (견인전동기 고정자 코일의 전기적 열화특성)

  • Park Hyun-June;Jang Dong-Uk;Kim Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.623-627
    • /
    • 2003
  • Aging and failure of motor insulation depend on the stresses imposed on it. The insulation life time depends on the severity of the stresses. The electrical aging by transient surge is very important to traction motor in EMU(electric multiple unit). This paper presents the insulation characteristics of stator coil by transient surge from inverter. There are several nondestructive tests available for checking the condition of motor insulation, the probable extent of aging, and the rate of which aging is taking place. So the insulation characteristics of stator coil were each analyzed by measurement of leakage current, dielectric loss($tan{\delta}$), capacitance, polarization index(PI) and partial discharge. The method of diagnosis is able to analyze the aging condition and predict the life of the traction motor in EMU.

  • PDF

Fast Contingency Ranking Algorithm of Power Equipment (전력설비의 신속한 상정사고 선택 앨고리즘)

  • 박규홍;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 1998
  • This paper presents an algorithm for contingency ranking using line outage distribution factors(LODF) which are established by generation shift distribution factors(GSDF) from DC load flow solutions. By using the LODF, the line flow can be calculated according to the modification of base load flow if the contingency occur. To obtain faster contingency ranking, only the loading line more than 35[%](60[%] at 154[kV]) is included in the computation of Performance Index(PI). The proposed algorithm has been validated in tests on a 6-bus test system.system.

  • PDF

The Security Constrained Economic Dispatch with Line Flow Constraints using the Hybrid PSO Algorithm (Hybrid PSO를 이용한 안전도를 고려한 경제급전)

  • Jang, Se-Hwan;Kim, Jin-Ho;Park, Jong-Bae;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1334-1341
    • /
    • 2008
  • This paper introduces an approach of Hybrid Particle Swarm Optimization(HPSO) for a security-constrained economic dispatch(SCED) with line flow constraints. To reduce a early convergence effect of PSO algorithm, we proposed HPSO algorithm considering a mutation characteristic of Genetic Algorithm(GA). In power system, for considering N-1 line contingency, we have chosen critical line contingency through a process of Screening and Selection based on PI(performance Index). To prove the ability of the proposed HPSO in solving nonlinear optimization problems, SCED problems with nonconvex solution spaces are considered and solved with three different approach(Conventional GA, PSO, HPSO). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed algorithm.

Growth Characteristics of Tomatoes Grafted with Different Rootstocks Grown in Soil during Winter Season (대목 종류에 따른 저온기 토경재배에서의 토마토 생육 특성 분석)

  • Lee, Hyewon;Lee, Jun Gu;Cho, Myeong Cheoul;Hwang, Indeok;Hong, Kue Hyon;Kwon, Deok Ho;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.194-203
    • /
    • 2022
  • Cultivation of tomatoes in Korea grown in soil covers 89% of the total area for tomato cultivation. Tomatoes grown in soil often encounter various environment stresses including not only salt stress and soil-borne diseases but also cold stress in the winter season. This study was conducted to comparatively analyze the performance of rootstocks with cold stress by measuring the growth, yield, and photosynthetic efficiency in tomatoes grown in soil. The rootstocks were used 'Powerguard', 'IT173773', and '20LM' for the domestic rootstock cultivars and 'B-blocking' for a control cultivar. The tomato cultivar 'Red250' was used as the scion and the non-grafted tomatoes. Stem diameter, flowering position, leaf length, and leaf width were investigated for the growth parameters. The stem diameter of the non-grafted tomatoes decreased by 15% compared to the grafted tomatoes at 80 days after transplanting when exposed to low temperatures of 9-14℃ for 14 days. The leaf length and width of the non-grafted tomatoes were the lowest with 42.4 cm and 41.8 cm at 80 days after transplanting. The total yield per plant was the highest in tomato plants grafted on 'Powerguard' with 1,615 g and lowest in non-grafted tomatoes with 1,299 g. As the result of measuring the chlorophyll fluorescence parameters, PIABS and DI0/RC, which mean the performance index and dissipated energy flux, 'Powerguard' was the highest with 3.73 in PIABS and the lowest with 0.34 in DI0/RC, whereas non-grafted tomatoes was the lowest with 2.62 in PIABS and the highest with 0.41 in DI0/RC at 80 days after transplanting. The stem diameter has positive correlation with PIABS, while it has negative correlation with DI0/RC. The results indicate that can be analyzed by chlorophyll fluorescence parameters can be used for analyzing the differences in the growth of tomato plants grafted on different rootstocks when exposed to cold stress.

The Early Growth Performances of Pinus densiflora and Larix kaempferi Seedlings Under Open-field Experimental Warming and Precipitation Manipulation (실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성)

  • Kwon, Boram;Cho, Min Seok;Yang, A-Ram;Chang, Hanna;An, Jiae;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • This study aimed to investigate the effects of climate change on the survival and growth performance of Pinus densiflora and Larix kaempferi seedlings using open-field experimental warming and precipitation manipulation. We measured the survival rate, root-collar diameter, and height, and then calculated the seedling quality index (SQI) of 2-year-old seedlings under 6 treatments [2 temperatures (TC: Control; TW: Warming) × 3 precipitation manipulations (PC: Control; PD: Decreased; PI: Increased)] and performed a two-way ANOVA to test for differences.The air temperature of the warming plots was 3℃ higher than that of the control plots, while the precipitation manipulation plots received ±40% of the precipitation received by the control plots. Temperature and precipitation treatments did not significantly affect the survival rate of P. densiflora; however, the SQI of P. densiflora decreased with increasing precipitation. In contrast, the mortality rate of L. kaempferi increased with increasing temperature and decreasing precipitation. Furthermore, in L. kaempferi, TC × PI treatment resulted in the lowest SQI with a significant interaction effect observed between the two factors. In summary, low seedling production and quality should be expected in P. densiflora as precipitation increases and in L. kaempferi as temperature increases or precipitation decreases. These results indicate species-specific sensitivities to climate change of two plant species at the nursery stage. With the occurrence of global warming, the frequencies of drought and heavy rainfall events are increased, and this could affect the survival and seedling quality of tree species. Therefore, it is necessary to improve nursery techniques by establishing new adaptation strategies based on species-specific growth performance responses.

Effects of Soil Drought and Waterlogging on Photosystem II Activities in Cercis Bunge (토양 건조 및 침수처리가 박태기나무의 광계 II 활성에 미치는 영향)

  • Lee, K.C.;Lee, U.Y.;Youn, K.K.;Kwon, Y.H.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • This study was conducted to investigate the photosystem II activities of Cercis chinensis by soil water condition. Drought stress was induced by withholding water and waterlogging treatments was immerging the pots for 15 days. Results showed that the relative activities per reaction center such as ABS/RC, TRo/RC and Dio/RC were significantly increased compared with the control group after 12 days in waterlogging treatments. Particularly, Dio/RC increased substantially under waterlogging stress, indicating that excessive energy was consumed by heat dissipation. Furthermore, the performance index on absorption basis(PIabs) and responses to structural and functional PS II(SFIabs) were dramatically decreased after 15 days in both the drought and waterlogging treatments, which reflects the relative reduction state of the photosystem II. These results of chlorophyll a fluorescence by OKJIP analysis show that the sensitive changes photosystem II activity. Thus, on the basis of our results that Cercis chinensis was exhibited a strong reduction of photosynthetic activity to waterlogging stress, and OKJIP parameters such as ABS/RC, DIo/RC, PIabs and SFIabs could be useful indicator to monitor the physiological states of Cercis chinensis under soil water condition.

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

Development of New Effectiveness Assessment Indices of Pumped Storage Power Plant (양수발전기의 신 효용성 평가 지수 개발)

  • Lee, Sung-Hun;Choi, Jae-Seok;Cha, Jun-Min;Kim, Daniel
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.867-874
    • /
    • 2014
  • The pumped storage power plants have excellent load following characteristics. It can also be committed quickly for synchronous reserve when it is in the generating mode because it can readily increase its generating power and, consequently, increases the overall system reliability. There are strong incentives for standing the system reliability. Additionally, $CO_2$ emission can be typically impacted due to operation of pumped generators. The increase or decrease of $CO_2$ depends on the generation mix. This paper proposes evaluation of reliability, economy and environment of power system considering pumped generator. This paper describes three case studies of the reliability and economy and environment according to capacity factor and storage capacity of pumped generators. The probabilistic production simulation model is used in this paper. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model on the $5^{th}$ power plan in Korea.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.