• 제목/요약/키워드: Performance evaluation algorithm

Search Result 1,738, Processing Time 0.026 seconds

Downlink Signal Measurement Algorithm for WCDMA/HSPA/HSPA+

  • Kwon, Bit-Na;Lee, Eui-Hak;Hong, Dae-Ki;Kang, Sung-Jin;Kang, Min-Goo;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3040-3053
    • /
    • 2015
  • Wideband code division multiple access (WCDMA), high speed packet access (HSPA) and HSPA+ are third generation partnership project (3GPP) standards. These systems are the major wireless communication standards. In order to test the performance of WCDMA/HSPA/HSPA+ signal in a base station, the measurement hardware is required to the evaluation of the transmitted signals. In this paper, the algorithm for the performance measurement of the WCDMA/HSPA/HSPA+ is proposed. Also, the performance of the measurement algorithm is used to evaluate the generated signal by the WCDMA/HSPA/HSPA+ signal generator. Generally, the algorithm of normal modems cannot be applied to the measurement system because the signal measurement equipment needs to guarantee the high accuracy. So, the WCDMA/HSPA/HSPA+ signal measurement algorithm for the accurate measurement is proposed. By the simulation, it is confirmed that the proposed measurement algorithm has good performance compared with the specification. Therefore, the proposed algorithm can be usefully applied to verify the performance of the measurement using the simulation.

Implementation and Performance Evaluation of TMSC6711 DSP-based Digital Beamformer

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Chang Sheng , Liew
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • This paper discusses the implementation and performance evaluation of a DSP-based digital beamformer using the Texas Instrument TMSC6711 DSP processor for smart antenna applications. Two adaptive beamforming algorithms which served as the brain for the beamformer, the Normalized Least-Mean-Square (NLMS) and the Constant Modulus Algorithms (CMA) were embedded into the processor and evaluated. Result shows that the NLMS-based digital beamformer outperforms the CMA-based digital beamformer: 1)For NLMS algorithm, the antenna steers to the direction of the desired user even at low iteration value and the suppression level towards the interferer increases as the number of iteration increase. For CMA algorithm, the beam radiation pattern slowly steers to the desired user as the number of iteration increased, but at arate slower than NLMS algorithm and the sidelobe level is shown to increases as the number of iteration increase. 2) The NLMS algorithm has faster convergence than CMA algorithm and the error convergence for CMA algorithm sometimes is subject to misadjustment.

  • PDF

Improved marine predators algorithm for feature selection and SVM optimization

  • Jia, Heming;Sun, Kangjian;Li, Yao;Cao, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1128-1145
    • /
    • 2022
  • Owing to the rapid development of information science, data analysis based on machine learning has become an interdisciplinary and strategic area. Marine predators algorithm (MPA) is a novel metaheuristic algorithm inspired by the foraging strategies of marine organisms. Considering the randomness of these strategies, an improved algorithm called co-evolutionary cultural mechanism-based marine predators algorithm (CECMPA) is proposed. Through this mechanism, search agents in different spaces can share knowledge and experience to improve the performance of the native algorithm. More specifically, CECMPA has a higher probability of avoiding local optimum and can search the global optimum quickly. In this paper, it is the first to use CECMPA to perform feature subset selection and optimize hyperparameters in support vector machine (SVM) simultaneously. For performance evaluation the proposed method, it is tested on twelve datasets from the university of California Irvine (UCI) repository. Moreover, the coronavirus disease 2019 (COVID-19) can be a real-world application and is spreading in many countries. CECMPA is also applied to a COVID-19 dataset. The experimental results and statistical analysis demonstrate that CECMPA is superior to other compared methods in the literature in terms of several evaluation metrics. The proposed method has strong competitive abilities and promising prospects.

Evaluation of Recursive PIV Algorithm with Correlation Based Correction Method Using Various Flow Images

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.409-421
    • /
    • 2003
  • The hierarchical recursive local-correlation PIV algorithm with CBC (correlation based correction) method was employed to increase the spatial resolution of PIV results and to reduce error vectors. The performance of this new PIV algorithm was tested using synthetic images, PIV standard images of Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with riblet surface. As a result, most spurious vectors were suppressed by employing the CBC method, the hierarchical recursive correlation algorithm improved the sub-pixel accuracy of PIV results by decreasing the interrogation window size and Increased spatial resolution significantly. However, with recursively decreasing of interrogation window size, the SNR (signal-to-noise ratio) in the correlation plane was decreased and number of spurious vectors was increased. Therefore, compromised determination of optimal interrogation window size is required for given flow images, the performance of recursive algorithm is also discussed from a viewpoint of recovery ratio and error ratio in the paper.

Minimization of Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Unbalanced Grid Condition

  • Park, Yonggyun;Suh, Yongsug;Go, Yuran
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.273-274
    • /
    • 2012
  • This paper investigates control algorithms for a doubly fed induction generator(DFIG) with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Two different control algorithms to compensate for unbalanced conditions are proposed. Evaluation factors of control algorithm are fault ride-through(FRT) capability, efficiency, harmonic distortions and torque pulsation. Zero regulated negative sequence stator current control algorithm has the most effective performance concerning FRT capability and efficiency. Ripple-free control algorithm nullifies oscillation component of active power and reactive power. Ripple-free control algorithm shows the least harmonic distortions and torque pulsation. Combination of zero regulated negative sequence stator current and ripple-free control algorithm control algorithm depending on the operating requirements and depth of grid unbalance presents the most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system.

  • PDF

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

An Effective Threat Evaluation Algorithm for Multiple Ground Targets in Multi-target and Multi-weapon Environments

  • Yoon, Moonhyung;Park, Junho;Yi, Jeonghoon
    • International Journal of Contents
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • In an environment where a large number of weapons are operated compared to a large number of ground targets, it is important to monitor and manage the targets to set up a fire plan, and through their multilateral analysis, to equip them with a priority order process for targets having a high threat level through the quantitative calculation of the threat level. Existing studies consider the anti-aircraft and anti-ship targets only, hence, it is impossible to apply the existing algorithm to ground weapon system development. Therefore, we proposed an effective threat evaluation algorithm for multiple ground targets in multi-target and multi-weapon environments. Our algorithm optimizes to multiple ground targets by use of unique ground target features such as proximity degree, sorts of weapons and protected assets, target types, relative importance of the weapons and protected assets, etc. Therefore, it is possible to maximize an engagement effect by deducing an effective threat evaluation model by considering the characteristics of ground targets comprehensively. We carried out performance evaluation and verification through simulations and visualizations, and confirmed high utility and effect of our algorithm.

Performance Evaluation and Convergence Analysis of a VEDNSS LMS Adaptive Filter Algorithm

  • Park, Chee-Hyun;Hong, Kwang-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.64-68
    • /
    • 2008
  • This paper investigates noise reduction performance and performs convergence analysis of a Variable Error Data Normalized Step-Size Least Mean Square(VEDNSS LMS) algorithm. Adopting VEDNSS LMS results in higher system complexity, but noise is reduced providing fast convergence speed Mathematical analysis demonstrates that tap coefficient misadjustment converges. This is confirmed by computer simulation with the proposed algorithm.

Design of mixed noise reduction algorithm for SEM image (전자 현미경 영상의 혼합 잡음제거 알고리즘에 관한 연구)

  • 최재혁;박선우
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.315-321
    • /
    • 1999
  • In this paper, the SEM image processing system based on PC is designed, and a new noise reduction filtering algorithm is proposed. The SEM image obtained in semiconductor processing line is sensitive to noise, the weighted-D filter can remove uniform and Gaussian noise effectively, but can not remove impulse noise properly, A new improved filtering algorithm is proposed to reduce mixed-noise. The performance of the proposed filter is quantitatively evaluated by use of the normalized mean square errors (NMSE). The experimental results show that the performance of the proposed filter is obtained between 0.96 and 2.5 times better than that of weighted-D filter in NMSE evaluation.

  • PDF

Performance Evaluation of a Suspension Seat Controller Using ECU-in-the-Loop Simulation (ECU-in-the Loop Simulation을 사용한 운전석 현가제어기의 성능평가)

  • Baek, Woon-Kyung;Lee, Ji-Woong;Lee, Jong-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1170-1178
    • /
    • 2007
  • Repeated hardware tests and tuning, investing cost and time, are usually required to assure a satisfactory performance of the suspension seat. In this study, an EILS(ECU-in-the-loop) method was proposed to develop a controller for a semi-active suspension seat with a MR(magneto-rheological) damper. EILS system was developed using a real-time seat dynamics model communicating with ECU hardwares under a closed loop environment utilizing Matlab/Simulink and xPC $TargetBox^{TM}$. A sky-hook based control algorithm with optimized damping coefficients was verified to reduce the energy consumption and to improve the vibration response performance.