• 제목/요약/키워드: Performance based Learning

검색결과 4,682건 처리시간 0.032초

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • 장승민;손승우;김봉석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

Vulnerability Threat Classification Based on XLNET AND ST5-XXL model

  • Chae-Rim Hong;Jin-Keun Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.262-273
    • /
    • 2024
  • We provide a detailed analysis of the data processing and model training process for vulnerability classification using Transformer-based language models, especially sentence text-to-text transformers (ST5)-XXL and XLNet. The main purpose of this study is to compare the performance of the two models, identify the strengths and weaknesses of each, and determine the optimal learning rate to increase the efficiency and stability of model training. We performed data preprocessing, constructed and trained models, and evaluated performance based on data sets with various characteristics. We confirmed that the XLNet model showed excellent performance at learning rates of 1e-05 and 1e-04 and had a significantly lower loss value than the ST5-XXL model. This indicates that XLNet is more efficient for learning. Additionally, we confirmed in our study that learning rate has a significant impact on model performance. The results of the study highlight the usefulness of ST5-XXL and XLNet models in the task of classifying security vulnerabilities and highlight the importance of setting an appropriate learning rate. Future research should include more comprehensive analyzes using diverse data sets and additional models.

The Roles of Market-Based Learning and Customer Orientation in Shaping Effective Selling Behavior and Efforts

  • Park, Jeong Eun;Kim, Seongjin;Lee, Sungho
    • Asia Marketing Journal
    • /
    • 제11권2호
    • /
    • pp.37-51
    • /
    • 2009
  • Although previous studies have made significant progress in adaptive selling behavior (ASB), few studies have considered salesperson's customer orientation (CO) and learning behavior as determinants of effective sales management (ASB and relationship-making efforts), despite the discussion of important roles of these constructs. The authors test not only the relationships of salesperson's CO and market-based learning behavior to ASB and relationship-making efforts, but also the effects of ASB on relationship-making efforts and performance. The results of the study, which is done with samples of salespeople from Korean companies, indicate that salesperson's CO and market-based learning behavior are identified as significant determinants of ASB. Moreover, both salesperson's ASB and relationship-making efforts have significant effects on sales performance. On the other hand, as per salesperson's relationship-making efforts, salesperson's CO has a positive effect, but salesperson's market-based learning behavior and ASB do not influence his or her relationship-making efforts, which suggest a provocative possibility of conceptualization regarding the relationship between ASB and relationship management efforts.

  • PDF

기계학습기반 양돈생산성 예측방안 (Production Performance Prediction of Pig Farming using Machine Learning)

  • Lee, Woongsup;Sung, Kil-Young;Ban, Tae-Won;Ham, Young Hwa
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.130-133
    • /
    • 2020
  • Smart pig farm which is based on IoT has been widely adopted by many pig farmers. In order to achieve optimal control of smart pig farm, the relation between environmental conditions and performance metric should be characterized. In this study, the relation between multiple environmental conditions including temperature, humidity and various performance metrics, which are daily gain, feed intake, and MSY, is analyzed based on data obtained from 55 real pig farm. Especially, based on preprocessing of data, various regression based machine learning algorithms are considered. Through performance evaluation, we show that the performance can be predicted with high precision, which can improve the efficiency of management.

강소농교육 참여 농업인의 직무성과와 학습지향성, 자기효능감, 학습전이의 구조적 관계 (Structural Relations of Learning Orientation, Self-Efficacy, Learning Transfer and Job Performance of Farmers who Participated in the Strong and Small Farms Education)

  • 김사균;양석준
    • 농촌지도와개발
    • /
    • 제22권4호
    • /
    • pp.455-464
    • /
    • 2015
  • The purposes of this study are to explain and identify the frame of structural relations of learning orientation, self-efficacy, learning transfer and job performance of farmers who participated in the strong and small farms education. This is an experimental research with the data collected from 495 farmers who have taken the farm education. Based on the collected data, the study conducted a structural equation modeling(SEM) to confirm the validity and analyze the structural relations of the suggested model. Using measured and latent variables drew from the analyses, the study set a structural equation model and tested the model by analysis of the structural equation modeling with AMOS 18.0. The results found from the empirical analysis can be summarized as follows. 1) Learning orientation and self-efficacy positively influenced job performance through learning transfer. 2) The hypothesis that learning orientation would have direct impact on job performance was not supported. 3) The strong and small farms education is useful to expand learning transfer and to enhance job performance. So, government policy support has to reinforce learning support on farmers in order to achieve high performance of learning and job management through farm educations.

가상현실 기반 건설안전교육에서 개인특성이 학습성과에 미치는 영향 - 머신러닝과 SHAP을 활용하여 - (Impact of personal characteristics on learning performance in virtual reality-based construction safety training - Using machine learning and SHAP -)

  • 최다정;구충완
    • 한국건설관리학회논문집
    • /
    • 제24권6호
    • /
    • pp.3-11
    • /
    • 2023
  • 건설산업의 높은 재해율을 줄이고자, VR 기반 건설안전교육의 도입이 장려되고 있다. 그러나 학습자의 특성을 고려하지 않은 교육방식으로 인해, 학습자의 개인특성에 맞는 효과적인 교육을 수행하지 못하는 한계가 있다. 본 연구에서는, VR 기반 건설안전교육에서 학습성과에 영향을 미치는 개인특성을 분석하는 것으로 목표로 하였고, 이를 위해 머신러닝과 SHAP 기법을 활용하였다. SHAP 분석 결과, 연령이 학습성과에 가장 많은 영향을 미치는 것으로 나타났고, 경력이 가장 작은 영향을 미치는 것으로 나타났다. 또한, 연령은 학습성과와 음(-)의 상관관계를 보이고 있어, VR 기반 건설안전교육의 도입은 낮은 연령에게 더 효과적일 수 있는 것으로 나타났다. 반면, 학력, 자격, 경력은 양(+)의 상관관계를 보였다. 학력이 낮은 학습자에게 더욱 이해하기 쉬운 컨텐츠를 제공함으로써, 학습성과를 향상시킬 필요가 있다. 또한, 자격과 경력이 낮은 학습자의 특성은 학습성과에 영향을 거의 미치지 않으므로, 그 이외의 학습자 특성에 집중함으로써, 학습자 맞춤형 교육 컨텐츠를 제공할 수 있을 것으로 기대된다. 본 연구를 통해, 여러 개인특성이 학습성과에 서로 다른 영향을 미칠 수 있음을 확인했고, 이러한 결과를 활용함으로써, 건설근로자의 개인특성을 고려한 효과적인 안전교육의 기회를 제공할 수 있을 것으로 기대된다.

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

기계학습 기반의 실시간 이미지 인식 알고리즘의 성능 (Performance of Real-time Image Recognition Algorithm Based on Machine Learning)

  • 선영규;황유민;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.69-73
    • /
    • 2017
  • 본 논문에서는 기계학습 기반의 실시간 이미지 인식 알고리즘을 개발하고 개발한 알고리즘의 성능을 테스트 하였다. 실시간 이미지 인식 알고리즘은 기계 학습된 이미지 데이터를 바탕으로 실시간으로 입력되는 이미지를 인식한다. 개발한 실시간 이미지 인식 알고리즘의 성능을 테스트하기 위해 자율주행 자동차 분야에 적용해보았고 이를 통해 개발한 실시간 이미지 인식 알고리즘의 성능을 확인해보았다.

지역사회개발론에 근거한 평생학습도시 사업 개선 방안 탐색 (A Study on the Methods of Improving the Lifelong Learning City Project Based on the Community Development Theory)

  • 양흥권
    • 한국지역사회생활과학회지
    • /
    • 제19권2호
    • /
    • pp.245-265
    • /
    • 2008
  • The Lifelong Learning City Project has made quantitative expansion as well as qualitative growth since 2001 but the project has been criticized by academic scholars and field practitioners. The Lifelong Learning City Project is a national policy project which has been promoted by the Ministry of Education and Human Resources Development and should be required to make production profits proportional to the amount of public finance. The Lifelong Learning City Project is a community development project intended to promote growth and progress by supporting the community in lifelong learning endeavors. Therefore, the community development theory could offer guidelines to the Lifelong Learning City Project. Based on this assumption, this study intends to investigate the Lifelong Learning City Project at the national, city, and county levels using the community development theory. The improvement methods of the Lifelong Learning City Project are role allotment between national and wide level projects supporting organizations, and the establishment of a system and a long term project policy. In addition, the project is to have a more systematic performance. It is to enhance opportunities for community members' participation, and practice in planning, performance of learning, and the proper performance in regard to the community conditions and specificity. The most important goal of the Lifelong Learning City Project is to support the empowerment of community members by making opportunity planning, practicing and sharing lifelong learning more accessible.

  • PDF