• Title/Summary/Keyword: Performance Tests

Search Result 6,830, Processing Time 0.04 seconds

Development of Expandable Steel Pipe Piles to Improve Bearing Capacity (지지력 향상을 위한 확장형 강관말뚝에 관한 연구)

  • Kim, Uiseok;Kim, Junghoon;Kim, Jiyoon;Min, Byungchan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.5-13
    • /
    • 2021
  • Expandable steel pipe piles have been developed to ensure stability and reduce construction costs during underground floor remodeling and extension work. Expandable steel pipe piles are more economical and stable than micropiles. Extensible steel pipe pile is a method of improving the performance of steel pipes by expanding steel pipes underground. In this paper, the changes in buckling strength according to the shape of steel pipes in an extended steel pipe pile were identified, a numerical analysis model was developed to determine the expended part effect of bumps due to steel pipe expansion, and the optimal steel pipe expansion was calculated through material tests. The larger the expansion diameter of the steel pipe and the greater the number of expanded part, the greater the buckling strength. Numerical results showed that the number of expanded part has a greater effect on buckling strength than the expansion rate. When the expansion rate is more than 1.2 times, it can be seen that as the number of expanded part increases, the effect of increasing buckling strength increases significantly. It was also noted that the expanded part effect of the bumps occur significantly when the extension angle is less than 45° and the expansion rate is 1.3 times higher. When the steel pipe is failure, the expanded rate is 20 to 32%, averaging 25.4%. Through the material test, it was analyzed that it is desirable to limit the maximum expansion rate for performing steel pipes to 16%.

Development of Standard Operating Procedures (SOPs), Standardization, TLC and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Naaz, Arjumand;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Siddiqui, Javed Inam;Zakir, Mohammad;Kazmi, Munawwar Husain;Minhajuddin, Ahmed
    • CELLMED
    • /
    • v.11 no.4
    • /
    • pp.21.1-21.9
    • /
    • 2021
  • Background: Unani System of Medicine (USM) has its origin to Greece. To ensure and develop the quality, authenticity of Unani drugs, standardization on modern analytical parameter is essential requirement for drugs. Objectives: The aimed of the present study was to develop a standard profile of "Qurṣ-e-Mafasil" by systematic study through authenticated ingredients, pharmacognostic identification followed by physicochemical, TLC, HPTLC fingerprinting analysis as per standard protocol. Material and Methods: In this study three batches of "Qurṣ-e-Mafasil" QM were prepared by standard method as per UPI had been followed by organoleptic properties of formulation such as appearance, color, odor, taste. Powder Microscopy and physicochemical studies were carried out such as Uniformity of weight, Friability, Disintegration time, hardness, LOD, ash vales and extractive values in like aqueous, alcohol & hexane. Further qualitative tests such as Thin-Layer Chromatography (TLC), and High-Performance Thin Layer Chromatography (HPTLC) studies were also carried out to develop fingerprint pattern of the alcoholic solvent extract of QM. Phytochemical screening was carried out in different solvent extracts such as alcoholic, aqueous and chloroform extracts to detect the presence phytoconstituents in the formulation QM. Heavy metals, Microbial Load Contamination and pesticidal residues were also determined. Results: Qurṣ-e-Mafasil showed tablet-like appearance, light brown colour, mild pungent odour and acrid taste. Uniformity of weight (mg), friability (rpm), and hardness (kg/cm) and disintegration time was ranged between (500 to 503), (0.0340 to 0.038), (8.40 to 8.67) and (4-5 minutes) respectively for the three batches. Loss in weight on drying at 105℃ was ranged between (8.3425 to 8.7346). Extracted values were calculated in distilled water ranged between (30.9091 to 31.4358), hexane (1.1419 to 1.4281), and alcohol (3.3352 to 3.3962). The ash values recorded were ranged between (3.7336 to 3.8378), and acid insoluble ash (0.5859 to 0.6112).

DMSO Improves Motor Function and Survival in the Transgenic SOD1-G93AMouse Model of Amyotrophic Lateral Sclerosis (DMSO 투여된 근위축성 측삭경화증 SOD1-G93A 형질 변환 마우스 모델에서의 근육 기능과 생존 기간 증가 효과)

  • Park, Kyung-Ho;Kim, Yeon-Gyeong;Park, Hyun Woo;Lee, Hee Young;Lee, Jeong Hoon;Patrick, Sweeney;Park, Larry Chong;Park, Jin-Kyu
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.611-621
    • /
    • 2022
  • Dimethyl sulfoxide (DMSO) is commonly used as control or vehicle solvent in preclinical research of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) due to its ability to dissolve lipophilic compounds and cross the blood brain barrier. However, the biochemical effects of DMSO on the outcomes of preclinical research are often overlooked. In the present study, we investigated whether the long-term oral administration of 5% DMSO affects the neurological, functional, and histological disease phenotype of the copper/zinc superoxide dismutase glycine 93 to alanine mutation (SOD1-G93A) mouse model of amyotrophic lateral sclerosis. SOD1-G93A transgenic mice showed shortened survival time and reduced motor function. We found that administration with DMSO led to increased mean survival time, reduced neurological scores, and improved motor performance tested using the rotarod and grip strength tests. On the other hand, DMSO treatment did not attenuate motor neuron loss in the spinal cord and denervation of neuromuscular junctions in the skeletal muscle. These results suggest that DMSO administration could improve the quality of life of the SOD1-G93A mouse model of ALS without affecting motor neuron denervation. In conclusion, the use of DMSO as control or vehicle solvent in preclinical research may affect the behavioral outcomes in the SOD1-G93A mouse model. The effect of the vehicle should be thoroughly considered when interpreting therapeutic efficacy of candidate drugs in preclinical research.

Development of RAW Data Storage Equipment for Operation Algorithm research of the Millimeter Wave Tracking Radar (밀리미터파 추적레이더 운용 알고리듬 연구를 위한 RAW 데이터 저장 장비 개발)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • Recently, the tracking radar continues research to develop a new operation algorithm that can acquire and track a target in various environments. In general, modeling similar to the real target and environment is used to develop a new operation algorithm, but there is a limit to modeling the real environment. In this paper, a RAW data storage device was developed to efficiently develop a new operation algorithm required for the tracking radar using millimeter wave to acquire and track the target. The RAW data storage equipment is designed so that the signal processing device of the tracking radar using millimeter wave can save the RAW data output from 8 channels to OOOMSPS. RAW data storage equipment consists of data acquisition equipment and data storage equipment. The data acquisition equipment was implemented using a commercial Xilinx KCU 105 Evaluation KIT capable of high-speed data communication interface, and the data storage equipment was implemented by applying a computer compatible with the commercial Xilinx KCU 105 Evaluation KIT. In this paper, the performance of the implemented RAW data storage equipment was verified through repeated interlocking tests with the signal processing device of the millimeter wave tracking radar.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Infection Control in Pulmonary Function Laboratories in Domestic Hospitals (국내 의료기관의 폐기능검사실에서 감염관리 실태조사)

  • Nan-Hee LEE;Suhng Wook KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.143-150
    • /
    • 2023
  • The global outbreak of COVID-19 has underscored the pressing need for robust infection control practices in pulmonary function laboratories (PFL). However, the existing guidelines and regulatory frameworks provided by relevant authorities in the country have revealed certain deficiencies in effectively addressing this significant public health crisis. This study surveyed the infection control regulations, disposable item usage, ventilation facilities, spatial separation, and the configuration of entrance doors in 51 domestic hospital facilities from Oct 1, 2021, to Nov 2, 2021. The survey findings revealed that while there was a relatively satisfactory adherence to airborne, droplet, and contact precautions with adequate awareness and utilization of personal protective equipment, the environmental disinfection practices exhibited a suboptimal performance rate of 39.22% per patient. Depending on the specific survey domains, substantial variations were observed in the utilization of disposable items (81.05%), ventilation systems (45.75%), dedicated testing spaces (80.39%), separation of administrative areas (15.69%), and the installation of automated doors (19.61%). This study not only highlights the paramount importance of infection control in PFLs within domestic medical institutions but also provides foundational data for developing and enhancing standardized guidelines that align with international benchmarks for infection control in these settings.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Experimental Assessment of the Methanol Addition Effect on the Tribological Characteristics of Ni-based Alloy (메탄올 첨가에 따른 Ni 기반 합금의 트라이볼로지 특성 변화에 대한 실험적 연구)

  • Junemin Choi;Sangmoon Park;Youngjun Kim;Sunghoon Kim;Hyemin Kim;Jeongeon Park;JeongWon Yu;Myeonggyu Lee;Hyeonwoo Lee;Koo-Hyun Chung
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Currently, the demand for green technologies toward a sustainable future is rapidly increasing due to growing concern over environmental issues. Methanol is biodegradable and can provide clean combustion to reduce sulfur oxide and nitrogen oxide emissions, and therefore it is a candidate fuel for marine engines. However, the effect of methanol on tribological characteristic degradation should be addressed for methanol-fueled engines. In this study, the methanol addition effects on tribological characteristic degradation is experimentally assessed using a pin-on-disk tribo-tester. Ni-based alloy is used as a target material due to its broad applicability as an engine component material. For a lubricant, engine oil with and without methanol are used. The tests are conducted for up to 10,000 cycles under boundary lubrication while the change in friction force is monitored. Additionally, the wear rate is determined based on laser scanning confocal microscope data. An additional test in which methanol is added at regular intervals is performed with an aim to directly observe its effect on friction. Overall, the friction coefficient increases slightly with increasing methanol concentration. Furthermore, the wear rate of the pin and disk increase significantly with methanol addition. The results also indicate that the friction increases instantaneously with methanol addition at the contacting interface. These findings may be useful for better understanding the methanol effect on the tribological characteristics of Ni-based alloys for methanol-fueled engines with improved performance.