• Title/Summary/Keyword: Performance Simulator

Search Result 1,905, Processing Time 0.03 seconds

Design and Application of a Photovoltaic Array Simulator with Partial Shading Capability

  • Beser, Ersoy
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1259-1269
    • /
    • 2019
  • PV system performance is dependent on different irradiations and temperature values in addition to the capability of the employed PV inverter / maximum power point tracker (MPPT) circuit or algorithm. Therefore, it would be appropriate to use a PV simulator capable of producing identical repeatable conditions regardless of the weather to evaluate the performance of inverter / MPPT circuits and algorithms. In accordance with this purpose, a photovoltaic (PV) array simulator is presented in this paper. The simulator is designed to generate current-voltage (I-V) and power-voltage (P-V) curves of a PV panel. Series connected cascaded modules constitute the basic part of the simulator. This feature also allows for the modeling of PV arrays since the number of modules can be increased and high voltage values can be reached with the simulator. In addition, the curves obtained at the simulator output become similar to the actual curves of sample PV panels with an increase in the number of modules. In order to show the validity of the proposed simulator, it was simulated for various situations such as panels under full irradiance and partial shading conditions. After completing simulations, experiments were realized to support the simulation study. Both simulation and experimental results show that the proposed simulator will be very useful for researchers to carry out PV studies under laboratory conditions.

Implementation of Network Level Simulator for Tactical Network Performance Analysis (전술통신망 성능분석을 위한 네트워크 시뮬레이터 구현)

  • Choi, Jeong-In;Shin, Sang-Heon;Baek, Hae-Hyeon;Park, Min-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-674
    • /
    • 2013
  • This paper studied about the design and implementation of tactical communication network simulator in order to obtain tactical communication network parameter, such as link capacity and routing plan, and a number of exceptional cases that may occur during actual deployment by conducting simulation of a large-scale tactical communication networks. This tactical communication network simulator provides equipment models and link models of commercial OPNET simulator for tactical communication network. In addition, 6 types of simulation scenario writings convenience functions and traffic generation models that may occur in situations of tactical communication network environment were implemented in order to enhance user friendliness. By taking advantages of SITL(System-In-The-Loop) function of OPNET, the tactical communication network simulator allows users to perform interoperability test between M&S models and actual equipment in operating simulation of tactical communication network, which is run on software. In order to confirm the functions and performance of the simulator, small-scale of tactical communication network was configured to make sure interoperability between SITL-based equipment and a large-scale tactical communication network was simulated and checked how to cope with traffic generated for each network node. As the results, we were able to confirm that the simulator is operated properly.

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.

Development of an Earth Observation Optical Payload Simulator

  • Lee, Jong-Hoon;Lee, Jun-Ho;Cheon, Yee-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.1-35.1
    • /
    • 2008
  • The importance on the simulation of earth observation optical payloads has been recently emphasized in order to estimate on-orbit imaging performance of the payloads. The estimation should consider all aspects of payload development; design, manufacture, test, assembly, launch and space environment. Until recently several studies have been focused the evaluation of the individual factors rather than the integrated. This paper presents the development of an integrated payload simulator. The simulator analyzes the payload imaging performance based on MTF(Modulation Transfer Function) calculations of the major factors (Diffraction, Aberration, Detector integration, Image motion and etc.) and the simulator can generate realistic artificial earth images as taken by defined earth observation payloads. The simulator is developed for the use of evaluating pre- and post-launch imaging performance and assisting on-board calibration of COMPSAT-3.

  • PDF

Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model (20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발)

  • 김형내;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

Performance Analysis of a Multiprocessor System Using Simulator Based on Parsec (Parsec 기반 시뮬레이터를 이용한 다중처리시스템의 성능 분석)

  • Lee Won-Joo;Kim Sun-Wook;Kim Hyeong-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.35-42
    • /
    • 2006
  • In this paper we implement a new simulator for performance analysis of a parallel digital signal processing distributed shared memory multiprocessor systems. using Parsec The key idea of this simulator is suitable in simulation of system that uses DMA function of TMS320C6701 DSP chip and local memory which have fast access time. Also, because correction of performance parameter and reconfiguration for hardware components are easy, we can analyze performance of system in various execution environments. In the simulation, FET, 2D FET, Matrix Multiplication. and Fir Filter, which are widely used DSP algorithms. have been employed. Using our simulator, the result has been recorded according to different the number of processor, data sizes, and a change of hardware element. The performance of our simulator has been verified by comparing those recorded results.

  • PDF

Analysis of Solar Simulator's Uncertainty Factor for Maximum Output Power Test of Photovoltaic Module (PV모듈의 발전성능시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.36W$ with 95% confidence level for 125W PV module(KD-5125).

Analysis of Solar Simulator's Uncertainty Factor for Photovoltaic Module's I-V curve test (PV모듈의 I-V특성 시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.5-7
    • /
    • 2006
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.75W$ with 95% confidence level for 125W PV module.

  • PDF

Implementation of DVB-T Simulator and Performance Evaluation in Rician Channels (DVB-T 시뮬레이터의 구현과 Rician 채널에서의 성능평가)

  • Seo, Man-Jung;Im, Sung-Bin;Kim, Na-Hoon;Cho, Jun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.231-232
    • /
    • 2006
  • In this paper, we developed a simulator for the DVB-T which can predict the performance of the system. In the simulator, the transmitter and receiver are implemented based on the European standard of the DVB-T. The BER performance is measured for various QAM levels and coding rates in Rician channels with several mobile speeds.

  • PDF

A study on the Development of a Driving Simulator for Reappearance of Vehicle Motion (I) (차량 주행 감각 재현을 위한 운전 시뮬레이터 개발에 관한 연구 (I))

  • Park, Min-Kyu;Lee, Min-Cheol;Son, Kwon;Yoo, Wan-Suk;Han, Myung-Chul;Lee, Jang-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.90-99
    • /
    • 1999
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. The driving simulator is used effectively for studying interaction of a driver-vehicle and developing vehicle system of a new concept. The driving simulator consists of a vehicle motion bed system, motion controller, visual and audio system, vehicle dynamic analysis system, cockpit system, and etc. In it is paper, the main procedures to develop the driving simulator are classified by five parts. First, a motion bed system and a motion controller, which can track a reference trajectory, are developed. Secondly, a performance evaluation of the motion bed system for the driving simulator is carried out using LVDTs and accelerometers. Thirdly, a washout algorithm to realize a motion of an actual vehicle in the driving simulator is developed. The algorithm changes the motion space of a vehicle into the workspace of the driving simulator. Fourthly, a visual and audio system for feeling higher realization is developed. Finally, an integration system to communicate and monitor between sub systems is developed.

  • PDF