• Title/Summary/Keyword: Performance Prediction Model

Search Result 2,889, Processing Time 0.034 seconds

A Study on the Thermal Stability of Long-Term Fuel Storage and Lifetime Estimation of Rubber O-ring in Contacted with Fuel (장기 저장연료의 열안정성 및 연료접촉 고무오링의 수명예측 연구)

  • Chung, K.W.;Hong, J.S.;Kim, Y.W.;Han, J.S.;Jeong, B.H.;Kwon, T.S.;Suh, D.O.;Sung, M.J.;Kwon, Y.I.
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.197-207
    • /
    • 2018
  • Thermal deterioration of fuel due to long-term storage influences engine performance and causes malfunctions. Fuel stability is usually evaluated via heat resistance and thermal stability during a brief heat shock at high temperature; storage stability in this scenario means that there is very little change in the quality of the fuel during long-term storage. In addition, rubber-based products such as oil seals, O-rings, and rubber hoses can influence the quality of the fuel. When these rubber products are in contact with fuel, they can swell, mechanically weaken, and occasionally crack, thus leaking low molar weight rubber and additives including plasticizer and antioxidant into the fuel to degrade its properties and shorten its useful lifetime. This study determines the thermal stabilities of three kinds of synthetic fuels by evaluating their low temperature kinematic viscosities, chemical composition changes via GC analyses, gross heat of combustion, and color changes. We evaluate the compression set of O-rings by immersing one NBR and two FKM rubber O-rings in the three synthetic fuel samples in airtight containers at variable storage temperatures for six months; from this, we estimate the lifetimes of the O-rings using the Power law model. There were very little changes in the chemical compositions and gross heat of combustion after six months of the experiment. The lifetimes are thus dependent on the materials of the rubber products, and in particular, the FKM O-ring was calculated to have a theoretical lifetime of 200 to 5,700 years. These results indicate that the synthetic fuels maintain their physical properties even after long-term storage at high temperatures, and the FKM O-ring is suitable for long-term sealing of these fuels.

Development of a Method for Determining the Instream Flow and Its Application: II. Application and Result (하천유지유량 결정 방법의 개발 및 적용: II. 적용 및 결과)

  • 김규호;김선미
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.185-202
    • /
    • 1996
  • The newly-developed method for estimating the instream flow, proposed by the authors (1996), was applied to the main channel reach of the Kum River basin in Korea. Performance of the suggested method was tested through the evaluations of the required flow, instream flow, and river-management flow which were estimated at five main reaches with each representative station. The mean drought flow was used as the object flow to evaluate the minimum instream flow for the mid- and large-size rivers. Water quality prediction by using the QUAL2E model was made for both cases that the planned wastewater treatment facilities may and may not be constructed. The required flow for the fish habitat was evaluated for 9 representative fish species. The instream flows required for the riverine aesthetics at Kong-ju and Puyo scenary points, for river navigation at natural channel conditions, and for current and potential recreation activities were evaluated, respectively. The instream flows required for other items are not quantified. On the whole, it is shown that the instream flow to maintain the natural riverine functions such as fish habitat, and riverine aesthetics govern the upstream reaches of the Kum River, and the artificial riverine functions such as conservation of water quality, navigation and recreations govern the middle and downstream reaches. Especially, it is found that the instream flow requirement depends largely upon the construction of wastewater treatment facilities at the Kum River basin.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇 개발)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF

A Study on the Estimation for the Compressive Strength of Member According to the Knot Types (옹이 형태별 소재의 압축강도 예측에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.170-177
    • /
    • 2010
  • Finite element numerical analysis was conducted with using the knot data which has a strong influence on the prediction of capacity for the structural wood member. Wood is a orthotropic property unlike other structural materials, so orthotropic property was applied. Knot was modelled as a cylinder shape, cone shape, and cubic shape. Compressive test was carried out to investigate the failure types and to calculate ultimate strengths for the wood members. Numerical model which can reflect the member size, number of knot, location of knot, size of knot was created and analyzed. By the numerical analysis using the ultimate compressive strength, numerical stress distribution types of each specimen was compared to real failure types for the test specimen. Cylinder shape modelling might be most reasonable, according to the necessary time for the analysis, the difficulty of element meshing, and the similarity of stress transfer around knot. Moreover, according to the stress and deformation distribution for the numerical analysis, failures or cracks of real specimen were developed in the vicinity of stress concentrated section and most transformed section. Based on the those results, numerical analysis could be utilized as a useful method to analyze the performance of bending member and tensile member, if only orthotropic property and knot modelling were properly applied.

Long-Term Performance Evaluation of Concrete Utilizing Oyster Shell in Lieu of Fine Aggregate (굴패각을 잔골재로 대체 사용한 콘크리트의 장기성능 평가)

  • Yang, Eun-Ik;Yi, Seong-Tae;Kim, Hak-Mo;Shim, Jae-Seol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.280-287
    • /
    • 2003
  • To evaluate the practical application of oyster shells(OS) as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells is appreciably lower than that of normal concrete. Thereby, concrete with higher oyster shell blend has the possibility of negatively influencing the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture rate increases. Namely, the modulus is reduced to approximately 10∼15% when oyster shells are blended up to 20% as the fine aggregate. The drying shrinkage strain increases with an increasing crushed oyster shells substitution rate. In addition, the existing model code of drying shrinkage and creep do not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on fleering and thawing resistance, carbonation and chemical attack of concrete. However, water permeability is considerably improved.