• Title/Summary/Keyword: Performance Maps Scaling

Search Result 19, Processing Time 0.017 seconds

Study on Component Map Scaling Technique Using a Gas Turbine Test Unit (가스터빈 시험장치를 이용한 구성품 성능선도 축척기법에 관한 연구)

  • 공창덕;고성희;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.105-109
    • /
    • 2003
  • A new scaling method for the prediction of gas turbine components characteristics using experimental data of gas turbine test unit has been proposed. In order to minimize the analyzed performance error in the this study, firstly component maps were constructed by real experimental performance data at some operating conditions and a polynomial obtained from scaling factors at given conditions, and then the simulated performance using the identified maps was compared with the performance result using the currently used traditional scaling method. In comparison, the performance analysis result by the currently used traditional scaling method was met well agreed with the real engine performance at most off-design points except for the design point. However the performance analysis result using the newly proposed scaling method had good agreement with the experimental results within maximum 5% error.

  • PDF

Study on Performance Modeling of a MT30 Gas Turbine Engine for Marine Ship Applications (선박용 MT30 가스터빈 엔진의 성능 모델링에 관한 연구)

  • Back, Kyeongmi;Ki, Jayoung;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2021
  • In this study, the performance modeling of MT30 gas turbine engine is performed. The design point is determined, and the component performance maps to which the scaling technique is applied are generated using standard maps provided by the commercial program. Off-design point performance analysis is performed with the generated performance model, and this is compared with the performance deck data of the engine. It is confirmed that the data of the performance maps generated by the one-point scaling method had some errors from the performance deck data, and it is determined that correction is necessary to increase the accuracy of the performance model. Therefore, the off-design point analysis is performed by creating the correction performance model in a manner that obtains the scaling factors for each operating point(off-design point) according to the high pressure spool speed.

Improvement on Performance Simulation Using Component Maps of Aircraft Gas Turbine Obtained from System Identification (시스템 식별로 구한 구성품 성능선도를 이용한 개선된 가스터빈 성능해석 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.96-103
    • /
    • 2004
  • Sought a set of component performance lines from experiment data or some data supplied in the engine manufacturer to improve the traditional scaling method and suggested a map scaling method that construct component performance lines newly using polynomial equations of MATLAB program. In this study, applied technique that is proposed newly to PT6A-62 that verified technique that is proposed newly using experiment data of small. size turboshaft engine, and is actuality aircraft engine. In identification of the component maps of the turboprop engine, the simulated performance using the proposed scaling method was compared with the real engine performance data and the performance using the traditional scaling method.

A New Scaling Method for Characteristics of Gas Turbine Components using Polynomial Equation (Polynomial 다항식을 이용한 가스터빈 구성품 선도의 새로운 Scaling 방법)

  • Kong, Chang-Duk;Ki, Ja-Young;Kang, Myoung-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.36-43
    • /
    • 2002
  • A new scaling method for the prediction of gas turbine components characteristics using experimental data or partially given data from engine manufacturers has been proposed. In order to minimize the analyzed performance error in the this study, firstly component maps were constructed by identifying performance data given by engine manufacturers at some operating conditions, then the simulated performance using the identified maps was compared with the performance result using the currently used traditional scaling method. In comparison, the performance result by the currently used traditional scaling method was well agreed with the real engine performance at on-design point but it had maximum 12% error at off-design points within the flight envelope of a study turboprop engine. However because the analysed performance by the newly proposed scaling method had maximum 6% reasonable error even within all flight envelope.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Ki Ja-Young;Kong Chang-Duck;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle). In order to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. When the performance analysis is performed at far away operation conditions from the design point, in case of use of e component map by the traditional scaling method, the error of the performance analysis results is greatly increasing. In the other hand, if in case of use of the compressor map generated by the proposed GAs scheme, the performance analysis results are closely met with those by the performance deck, EEPP.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Kong Chang-Duck;Ki Ja-Young;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.149-153
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle). In ordo to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. In this investigation, it was found that the newly proposed map generation method would be more effective than the traditional scaling method.

  • PDF

Study on Installed Performance of Turbo Shaft Engine (PW206C) for the Smart UAV (스마트 무인기용 터보축 엔진(PW206C)의 장착성능에 관한 연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.222-226
    • /
    • 2006
  • The purpose of this study is to analyze both the design and off design performance simulation of the PW206C turbo shaft engine used in the development of the smart UAV (Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). Its mainly aims to investigate performance behavior at the un-installed and installed conditions. The ways employed to be able to analyze the performance extensively were mainly carried out by comparison of performance simulation results from both the commercial program 'GASTURB 9' using compressor maps generated by Genetic algorithms (GAs) or Scaling Method, and the engine manufacturer's program 'EEPP'. Off-design performance analysis was performed through matching of both mass flow and work between engine components. The set of performance simulations of the developed analytical models was performed by a commercial program package (GASTURB 9) that provides great flexibility in the choice of independent variables of the overall system. The results from the simulations are used to compare turbo shaft engine (PW206C) performance data obtained by the EEPP. At un-installed condition, it was found that the results with the compressor map generated by GAs were relatively agreed well than those with the compressor map generated by the Scaling Method. The performance calculation results using the compressor map generated by GAs were compared at un-installed condition and installed conditions with ECS-off and ECS-Max in variation of altitude, gas generator speed and flight speed.

  • PDF

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

Study on Inverse Modeling of a Turboprop in High Altitude Operation using Engine Performance Data (성능데이터를 이용한 고고도운용 터보프롭엔진 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2010
  • The gas turbine engine performance relies greatly on its component performance characteristics. Generally, engine manufacturers do not provide engine purchasers the component performance characteristics which can be obtained by lots of experimental tests at various operating conditions and big amount of expenses. In previous works the component maps have mostly been generated by scaling from a similar component map. However this scaling method has large error at off design points, specially in high altitude operation. Therefore this work proposes an inverse modeling method that can generate components maps of PT6A-67A turboprop engine using performance data provided by the engine manufacturer. In addition, evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and performance data.

Component Map Generation of a Gas Turbine Engine Using Genetic Algorithms and Scaling Method (유전자 알고리즘과 스케일링 기법을 이용한 가스터빈 엔진 구성품 성능선도 개선에 관한 연구)

  • Kho Seong-Hee;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.299-303
    • /
    • 2005
  • In the present study, in order to improve precision of the component characteristic maps generated by the scaling method, a map generation method which can produce a compressor map from some experimental performance data using GAs(Genetic Algorithms) was proposed. However, in case of the proposed map generation method only using GAs, because it has a drawback for estimating correctly the surge points and the choke points of the compressor map, a modified GAs method was additionally proposed through complementally use of the scaling method to determine obviously those points of the compressor map.

  • PDF