• 제목/요약/키워드: Performance Information Use

검색결과 5,694건 처리시간 0.035초

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

재몰유선택적정황하공동특성대우고객희호적영향(在没有选择的情况下共同特性对于顾客喜好的影响): 조절초점적조절작용(调节焦点的调节作用) (The Effect of Common Features on Consumer Preference for a No-Choice Option: The Moderating Role of Regulatory Focus)

  • Park, Jong-Chul;Kim, Kyung-Jin
    • 마케팅과학연구
    • /
    • 제20권1호
    • /
    • pp.89-97
    • /
    • 2010
  • 本文研究共同特性对于无选择权的影响, 并涉及到了调节焦点理论. 本文主要着眼于这三个因子以及他们之间的关系. 之前的研究已经广泛涉及到这三个方面. 第一, 共同特性影响已经被广为研究. Tversky (1972) 开创了这个理论, EBA 模型: 通过消除方面. 根据这个理论, 消费者在比较的过程中更易于注意特殊的特性, 而忽略共同特性. 最近, 更多的研究开始针对于此模型对于消费者行为的影响. Chernev (1997) 认为增加共同特性可以减少选择距离. 但是, 随后Chernev (2001) 的研究指出共同特性可能是消费者认知上的负担, 所以他们更喜欢启发式的过程而不是系统式的过程. 这些研究提出了一系列问题: 共同特性是否影响顾客选择? 如果是的话, 这些影响是什么样子的? 第二, 一些研究指出没有选择的状况是消费者最好的选择, 他们在犹豫不决时用这种方法回避选择. 其他关于这一理论的研究是时间的压力, 消费者自信, 以及可供选择的数量. 第三, 调节聚焦理论在目前非常流行. 消费者有两个焦点目标: 促进和制止. 促进聚焦主要和希望, 野心, 成功, 获得等有关; 而制止聚焦和责任, 职责, 安全, 规避等有关. 调节聚焦理论预测了顾客的感情, 创造, 态度, 记忆, 表现, 和判断. 而这些都是市场营销研究的领域这些文献为本文的研究提供了一些理论支持. 特别是增加共同特征而不是忽略他们可以增加选择过程中克制消费者的没有选择状况的比重, 其对于促进消费者的作用确实相反的. 本文通过两个试验进行验证. 第一个是2 X 2 组间的设计(共同特性X调节聚焦), 数码相机作为相关的客体. 特别的是, 调节聚焦变量是从11个问题中取得的. 共同特性包括焦距, 重量, 记忆卡, 电池, 而像素和价格作为独特特性. 结果证明了我们的假设, 那就是增加共同特性增加了克制消费者的无选择比重, 而对促进消费者没有作用. 第二个试验被用来复制第一个实验的结果. 这个实验和之前的基本相同, 只有两个方面不同—主要控制和研究客体. 在促进的前提下, 研究对象必须一些词例如: 利润, 野心, 高兴, 成功, 发展等. 在克制的前提下, 他们必学写下坚持, 安全, 保护, 规避, 损失, 责任等词. 实验证明我们假设是成立的. 本研究说明了共同特性对于顾客选择的二重效果. 增加共同特性可以提高或者降低无选择状况. 本文对于理论研究和实践上都有着贡献. 对于市场营销人员来说, 他们可能需要根据顾客的划分来考虑产品的共同特性. 理论上, 研究结果支持共同特性和无选择状况的调节变量. 最后, 本文也有一些不足, 例如过于强调态度的重要性等. 我们希望本文能够为未来的研究做出抛砖引玉的作用.

식도암 방사선 치료에 대한 Patterns of Care Study ($1998{\sim}1999$)의 예비적 결과 분석 (Preliminary Report of the $1998{\sim}1999$ Patterns of Care Study of Radiation Therapy for Esophageal Cancer in Korea)

  • 허원주;최영민;이형식;김정기;김일한;이호준;이규찬;김정수;전미선;김진희;안용찬;김상기;김보경
    • Radiation Oncology Journal
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2007
  • 목 적: 전국 병원의 방사선종양학과에서 식도암으로 방사선 치료를 받은 환자들을 각 병원으로부터 입력 받아 세부 항목별로 분석하여 식도암 환자들의 구성과 특징을 파악하여 범국가적인 자료로 활용하는 한편 치료방침을 분석하여 향후 적절한 치료를 위한 가이드라인으로 삼고자 하였다. 대상 및 방법: 전국 병원의 방사선종양학과에서 1998년과 1999년의 2년간에 걸쳐 식도암으로 확진된 246명을 대상으로 하였다. 연간 400명 미만의 방사선치료 신환자 발생병원들을 A군, 400명 이상 900명 미만의 병원들을 B군, 그리고 900명 이상 신환자가 발생하는 병원을 C군으로 분류하여 최종적으로 A군에서 12병원, B군에서 8개 병원, 그리고 C군에서 3개의 병원이 연구에 참여하였다. 이미 개발된 Web-based Korean PCS system을 통해 각 병원으로부터 직접 자료를 입력 받아 이를 세부 항목별로 분석하였고 통계적 처리는 SPSS version 12.0.1을 사용하고 범주형 자료는 Chi-squared test를 사용하였고 연속변수는 ANOVA, Kruskal-Wallis test를 적용하였다. 결 과: 입력된 환자들의 성별 분포는 남자 224명(91.1%), 여자 22명(8.9%)이었고 연령별 중앙값은 62세 전후였다. 진단 및 병기결정을 위한 검사로는 식도 촬영술(228명, 92.7%), 식도내시경(226명, 91.9%) 및 흉부 식도 CT 스캔(238명, 96.7%)을 주로 시행하였다. 편평상피암이 대종을 이루어 237명(96.3%)의 환자에서 관찰되었고 중흉부식도(mid-thoracic esophagus)에서 발생한 식도암이 가장 많았다(110명, 44.7%). 임상 병기는 III기가 과반수 이상을 차지하였다(135명, 54.9%). 방사선 치료만 받은 경우는 57명(23.2%), 방사선 치료와 수술을 병용한 경우는 전체의 15%인 37명, 항암약물 치료와 방사선 치료를 병용한 경우는 123명(50%)이었다. 수술과 방사선 치료를 병행한 경우 전례에서 수술을 먼저 시행한 후 방사선 치료를 하였다. 항암치료를 방사선치료와 병행한 경우 반수 이상에서(70명, 56.9%) 동시항암방사선 치료를 시행하였고 31명(25.2%)에서 항암치료 후 방사선치료를 또는 항암요법 단독치료 후 동시항암방사선치료를(13명, 10.6%) 시행하였다. 방사선 치료는 6 MV (116명, 47.2%)와 10 MV (87명, 35.4%)의 X-ray가 대종을 이루었다. 방사선 치료 시 조사야는 longitudinal margin의 경우 중앙값은 7.0 cm이었지만 각 군별로 현저한 차이가 있었다(A군; 5.5 cm, B군; 8.0 cm, C군; 14.0 cm). 계획용 CT를 사용하지 않고 고식적인 AP/PA 조사야를 사용하여 치료한 경우가 대부분이었는데(206명, 83.7%) 이 때 방사선 조사량의 중앙값은 3,600 cGy이었다. 이후 추가 방사선 치료 시 계획용 CT를 사용하지 않고 2-oblique fields 사용하여 치료한 경우가 87명(35.4%)이었는데 방사선 조사량의 중앙값은 1,800 cGy이었다. 전 환자에서 1일 1회 180 cGy로 치료하였다. 전 환자에서 조사된 총 방사선량의 중앙값은 5,580 cGy이었다. 수술 후 방사선 치료를 시행한 경우 중앙값은 5,040 cGy이었고 수술을 받지 않은 환자 중앙값은 5,940 cGy이었다. 근접조사 방사선 치료는 총 34명(13.8%)에서 시행되었고, 전 환자에서 high dose rate Iridium-192를 사용하였다. 조사범위는 종양에서 longitudinal margin의 중앙값은 1 cm, prescribed isodose curve에서 axial length의 평균값은 8.25 cm, 폭은 2 cm, 그리고 전후 폭의 중앙값도 2 cm이었다. Fraction size의 중앙값은 300 cGy이었는데 B군의 경우는 500 cGy이었다. 총 분할 횟수는 $3{\sim}4$회가 대부분이었다. 한편, 방사선 치료 중 발생한 급성 부작용은 식도염이 가장 많았는데 전체 246명 환자 중 155명(63.0%)에서 발생하였다. 결 론: 전국 23개 병원의 식도암 환자 치료 Data를 분석해 본 결과 대부분의 병원에서 환자의 특징과 진단 및 병기 결정 방법, 치료의 유형 등에서 유사한 결과를 보였으며 신환 발생 수에 따른 병원 규모의 차이는 조사 결과에 큰 영향을 미치지 못하였다. 하지만 병원 규모가 클수록 10 MV 이상의 고에너지로 치료하는 경향이 많았으며 3D CT Plan도 병원 규모가 클수록 활용도가 높았다. 조사 야의 면적도 병원 군별로 차이를 보였다. 향후 더 많은 환자를 입력하여 생존율 분석까지 이루어지면 이 연구는 식도암 치료방침의 결정에 중요한 guideline을 제시해 줄 것으로 사료된다.