• Title/Summary/Keyword: Performance Information Use

Search Result 5,694, Processing Time 0.038 seconds

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

Consumer Awareness and Evaluation of Retailers' Social Responsibility: An Exploratory Approach into Ethical Purchase Behavior from a U.S Perspective (소비자인지도화령수상사회책임(消费者认知度和零售商社会责任): 종미국시각출발적도덕구매행위적탐색성연구(从美国视角出发的道德购买行为的探索性研究))

  • Lee, Min-Young;Jackson, Vanessa P.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • Corporate social responsibility has become a very important issue for researchers (Greenfield, 2004; Maignan & Ralston, 2002; McWilliams et al., 2006; Pearce & Doh 2005), and many consider it necessary for businesses to define their role in society and apply social and ethical standards to their businesses (Lichtenstein et al., 2004). As a result, a significant number of retailers have adopted CSR as a strategic tool to promote their businesses. To this end, this study sought to discover U.S. consumers' attitudes and behavior in ethical purchasing and consumption based on their subjective perception and evaluation of a retailer. The objectives of this study include: 1) determine the participants awareness of retailers corporate social responsibility; 2) assess how participants evaluate retailers corporate social responsibility; 3) examine whether participants evaluation process of retailers CSR influence their attitude toward the retailer; and 4) assess if participants attitude toward the retailers CSR influence their purchase behavior. This study does not focus on actual retailers' CSR performance because a consumer's decision making process is based on an individual assessment not an actual fact. This study examines US college students' awareness and evaluations of retailers' corporate social responsibility (CSR). Fifty six college students at a major Southeastern university participated in the study. The age of the participants ranged from 18 to 26 years old. Content analysis was conducted with open coding and focused coding. Over 100 single-spaced pages of written responses were collected and analyzed. Two steps of coding (i.e., open coding and focused coding) were conducted (Esterberg, 2002). Coding results and analytic memos were used to understand participants' awareness of CSR and their ethical purchasing behavior supported through the selection and inclusion of direct quotes that were extracted from the written responses. Names used here are pseudonyms to protect confidentiality of participants. Participants were asked to write about retailers, their aware-ness of CSR issues, and to evaluate a retailer's CSR performance. A majority (n = 28) of respondents indicated their awareness of CSR but have not felt the need to act on this issue. Few (n=8) indicated that they are aware of this issue but not greatly concerned. Findings suggest that when college students evaluate retailers' CSR performance, they use three dimensions of CSR: employee support, community support, and environmental support. Employee treatment and support were found as an important criterion in evaluation of retailers' CSR. Respondents indicated that their good experience with a retailer as an employee made them have a positive perception and attitude toward the retailer. Regarding employee support four themes emerged: employee rewards and incentives based on performance, working environment, employee education and training program, and employee and family discounts. Well organized rewards and incentives were mentioned as an important attribute. The factors related to the working environment included: how well retailers follow the rules related to working hours, lunch time and breaks was also one of the most mentioned attributes. Regarding community support, three themes emerged: contributing a percentage of sales to the local community, financial contribution to charity organizations, and events for community support. Regarding environments, two themes emerged: recycling and selling organic or green products. It was mentioned in the responses that retailers are trying to do what they can to be environmentally friendly. One respondent mentioned that the company is creating stores that have an environmentally friendly design. Information about what the company does to help the environment can easily be found on the company’s website as well. Respondents have also noticed that the stores are starting to offer products that are organic and environmentally friendly. A retailer was also mentioned by a respondent in this category in reference to how the company uses eco-friendly cups and how they are helping to rebuild homes in New Orleans. The respondents noticed that a retailer offers reusable bags for their consumers to purchase. One respondent stated that a retailer uses its products to help the environment, through offering organic cotton. After thorough analysis of responses, we found that a participant's evaluation of a retailers' CSR influenced their attitudes towards retailers. However, there was a significant gap between attitudes and purchasing behavior. Although the participants had positive attitudes toward retailers CSR, the lack of funds and time influenced their purchase behavior. Overall, half (n=28) of the respondents mentioned that CSR performance affects their purchasing decisions making when shopping. Findings from this study provide support for retailers to consider their corporate social responsibility when developing their image with the consumer. This study implied that consumers evaluate retailers based on employee, community and environmental support. The evaluation, attitude and purchase behavior of consumers seem to be intertwined. That is, evaluation is based on the knowledge the consumer has of the retailers CSR. That knowledge may influence their attitude toward the retailer and thus influence their purchase behavior. Participants also indicated that having CSR makes them think highly of the retailer, but it does not influence their purchase behavior. Price and convenience seem to surpass the importance of CSR among the participants. Implications, recommendations for future research, and limitations of the study are also discussed.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

A Study on the infringement of privacy of unmanned aircraft : Focusing on the analysis of legislation and US policy (무인항공기의 사생활 침해에 대한 법적 대응 : 미국 정책.입법안 분석을 중심으로)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.135-161
    • /
    • 2014
  • An unmanned aerial vehicle (UAV), commonly known as a drone and also referred to as an unpiloted aerial vehicle and a remotely piloted aircraft (RPA) by the International Civil Aviation Organization (ICAO), is an aircraft without a human pilot aboard. ICAO classify unmanned aircraft into two types under Circular 328 AN/190. Unmanned aircraft, which is the core of the development of the aviation industry. However, there are also elements of the legal dispute. Unmanned aircraft are manufactured in small size, it is possible to shoot a record peripheral routes stored in high-performance cameras and sensors without the consent of the citizens, there is a risk of invasion of privacy. In addition, the occurrence of the people of invasion of privacy is expected to use of civilian unmanned aircraft. If the exposure of private life that people did not want for unmanned aircraft has occurred, may occur liability to the operator of unmanned aircraft, this is a factor to be taken into account for the development of unmanned aircraft industry. In the United States, which is currently led by the unmanned aircraft industry, policy related to unmanned aircraft, invasion of privacy is under development, is preparing an efficient measures making. Unmanned aircraft special law has not been enforced. So there is a need for legal measures based on infringement of privacy by the unmanned aircraft. US was presented Privacy Protection Act of unmanned aircraft (draft). However Korea has many laws have been enacted, to enact a new law, but will be able to harm the legal stability, there is a need for the enactment of laws for public safety of life. Although in force Personal Information Protection Law, unmanned aerospace, when the invasion of privacy occurs, it is difficult to apply the Personal Information Protection Law. So, it was presented a privacy protection bill with infringement of privacy of unmanned aircraft in the reference US legislation and the Personal Information Protection Act.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

Home Economics teachers' concern on creativity and personality education in Home Economics classes: Based on the concerns based adoption model(CBAM) (가정과 교사의 창의.인성 교육에 대한 관심과 실행에 대한 인식 - CBAM 모형에 기초하여-)

  • Lee, In-Sook;Park, Mi-Jeong;Chae, Jung-Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.24 no.2
    • /
    • pp.117-134
    • /
    • 2012
  • The purpose of this study was to identify the stage of concern, the level of use, and the innovation configuration of Home Economics teachers regarding creativity and personality education in Home Economics(HE) classes. The survey questionnaires were sent through mails and e-mails to middle-school HE teachers in the whole country selected by systematic sampling and convenience sampling. Questionnaires of the stages of concern and the levels of use developed by Hall(1987) were used in this study. 187 data were used for the final analysis by using SPSS/window(12.0) program. The results of the study were as following: First, for the stage of concerns of HE teachers on creativity and personality education, the information stage of concerns(85.51) was the one with the highest response rate and the next high in the following order: the management stage of concerns(81.88), the awareness stage of concerns(82.15), the refocusing stage of concerns(68.80), the collaboration stage of concerns(61.97), and the consequence stage of concerns(59.76). Second, the levels of use of HE teachers on creativity and personality education was highest with the mechanical levels(level 3; 21.4%) and the next high in the following order: the orientation levels of use(level 1; 20.9%), the refinement levels(level 5; 17.1%), the non-use levels(level 0; 15.0%), the preparation levels(level 2; 10.2%), the integration levels(level 6; 5.9%), the renewal levels(level 7; 4.8%), the routine levels(level 4; 4.8%). Third, for the innovation configuration of HE teachers on creativity and personality education, more than half of the HE teachers(56.1%) mainly focused on personality education in their HE classes; 31.0% of the HE teachers performed both creativity and personality education; a small number of teachers(6.4%) focused on creativity education; the same number of teachers(6.4%) responded that they do not focus on neither of the two. Examining the level and type of performance HE teachers applied, the average score on the performance of creativity and personality education was 3.76 out of 5.00 and the mean of creativity component was 3.59 and of personality component was 3.94, higher than standard. For the creativity education, openness/sensitivity(3.97) education was performed most and the next most in the following order: problem-solving skill(3.79), curiosity/interest(3.73), critical thinking(3.63), problem-finding skill(3.61), originality(3.57), analogy(3.47), fluency/adaptability(3.46), precision(3.46), imagination(3.37), and focus/sympathy(3.37). For the personality education, the following components were performed in order from most to least: power of execution(4.07), cooperation/consideration/just(4.06), self-management skill(4.04), civic consciousness(4.04), career development ability(4.03), environment adaptability(3.95), responsibility/ownership(3.94), decision making(3.89), trust/honesty/promise(3.88), autonomy(3.86), and global competency(3.55). Regarding what makes performing creativity and personality education difficult, most HE teachers(64.71%) chose the lack of instructional materials and 40.11% of participants chose the lack of seminar and workshop opportunity. 38.5% chose the difficulty of developing an evaluation criteria or an evaluation tool while 25.67% responded that they do not know any means of performing creativity and personality education. Regarding the better way to support for creativity and personality education, the HE teachers chose in order from most to least: 'expansion of hands-on activities for students related to education on creativity and personality'(4.34), 'development of HE classroom culture putting emphasis on creativity and personality'(4.29), 'a proper curriculum on creativity and personality education that goes along with students' developmental stages'(4.27), 'securing enough human resource and number of professors who will conduct creativity and personality education'(4.21), 'establishment of the concept and value of the education on creativity and personality'(4.09), and 'educational promotion on creativity and personality education supported by local communities and companies'(3.94).

  • PDF

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Improved Sentence Boundary Detection Method for Web Documents (웹 문서를 위한 개선된 문장경계인식 방법)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.455-463
    • /
    • 2010
  • In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.