International Journal of Advanced Culture Technology
/
제12권3호
/
pp.148-158
/
2024
We investigate Autism Spectrum Disorder (ASD), which is typified by deficits in social interaction, repetitive behaviors, limited vocabulary, and cognitive delays. Traditional diagnostic methodologies, reliant on expert evaluations, frequently result in deferred detection and intervention, particularly in South Korea, where there is a dearth of qualified professionals and limited public awareness. In this study, we employ advanced deep learning algorithms to enhance early ASD screening through automated video analysis. Utilizing architectures such as Convolutional Long Short-Term Memory (ConvLSTM), Long-term Recurrent Convolutional Network (LRCN), and Convolutional Neural Networks with Gated Recurrent Units (CNN+GRU), we analyze video data from platforms like YouTube and TikTok to identify stereotypic behaviors (arm flapping, head banging, spinning). Our results indicate that the LRCN model exhibited superior performance with 79.61% accuracy on the augmented platform video dataset and 79.37% on the original SSBD dataset. The ConvLSTM and CNN+GRU models also achieved higher accuracy than the original SSBD dataset. Through this research, we underscore AI's potential in early ASD detection by automating the identification of stereotypic behaviors, thereby enabling timely intervention. We also emphasize the significance of utilizing expanded datasets from social media platform videos in augmenting model accuracy and robustness, thus paving the way for more accessible diagnostic methods.
Conventional vibration-measurement methods used for vibration testing typically employ accelerometers, which offer the significant advantage of accurately measuring vibrations at specific positions. However, they can only measure one point at a time as simultaneously measurements of multiple points can be economically disadvantageous. This study aims to overcome these limitations by analyzing the vibration outputs of accelerometers attached to a product and those obtained through image processing. The analysis involved assessing the measurement uncertainties and verifying the low-frequency vibration testing according to KS standards. The results validated and confirmed the reliability of the proposed camera-based image-processing vibration-measurement method, which exhibited a notable vibration-detection performance and measurement errors within 5% compared to accelerometers for low-frequency vibrations. This method has the potential for application across various vibration-response and durability evaluations. Future research should focus on expanding it to high-frequency vibration testing using high-speed cameras and further enhancing image-based vibration-analysis techniques.
기존의 무선통신시스템에서는 무선채널에서의 데이터 전송 성능 향상을 위해 시스템 각 계층의 특성에 적합한 재전송 방식을 사용한다. 이때 재전송 방식은 해당 계층에서 독립적으로 동작하며, 무선통신시스템의 종단 간 성능에는 관계없이 각 계층별로 정해진 파라미터에의해 동작하게 된다. 이와 같은 파라미터는 무선통신시스템의 종단 간 성능을 고려하지 않기 때문에 한정된 무선채널자원 및 네트워크 자원을 효율적으로 활용하기 위한 최적의 시스템 파라미터를 설계하기 어렵다. 따라서 각 서비스 별로 정해진 종단 간 QoS(Quality of Service) 요구사항을 만족시키기에 적합한 재전송 방식의 파라미터를 설계하기 위해서는 무선통신시스템의 종단 간 성능 분석이 필요하다. 본 논문에서는 다 계층 재전송 방식을 사용하는 무선통신시스템의 종단 간 성능을 수학적으로 분석하고, 모의실험을 통해 MAC(Medium Access Control) 계층과 전송계층에서 데이터 전송 성능을 도출한다. 또한 성능평가 결과를 바탕으로 사용자에게 제공되는 각 서비스 클래스의 특성에 적합한 재전송 방식과 파라미터 값을 설정하도록 한다. 모의실험 결과, HARQ(Hybrid Automatic Repeat reQuest)와 AMC(Adaptive Modulation and Coding)를 결합한 방식의 경우 지연에 민감한 서비스에 유리하며, ARQ(Automatic Repeat reQuest)와 AMC를 결합한 방식은 평균 전송지연시간에 영향을 받지 않는 서비스에 유리하다. 또한 TCP(Transmission Control Protocol)는 지연에 민감하지 않은 서비스에서만 사용 가능하다.
클라우드 컴퓨팅의 IaaS 서비스는 유지비용 없이 원하는 만큼의 고성능 가상 머신을 사용할 수 있다는 장점 덕분에 대용량 병렬 프로그램을 실행하기 위한 고성능 컴퓨팅 환경으로 주목받고 있다. 이러한 고성능 컴퓨팅 환경에서 병렬 프로그램의 실행에 소요되는 시간은 태스크 스케줄링 알고리즘에 좌우된다. 클라우드 컴퓨팅 환경을 기반으로 하는 태스크 스케줄링 알고리즘에 관한 연구는 사용자 부담 비용을 최소화하는 알고리즘이 주류를 이루었으며, 병렬 프로그램의 실행을 최대한 빨리 끝내기 위한 알고리즘에 관한 연구는 거의 이루어지지 않았다. 본 논문에서는 사용자 부담 비용 등의 제약 없이 병렬 프로그램을 최대한 빨리 끝내기 위한 알고리즘인 HAGD 알고리즘과, HAGD 알고리즘이 사용하는 새로운 성능 향상 기법인 묶음 태스크 복제 기법을 제안한다. 묶음 태스크 복제 기법은 기존 태스크 복제 기법을 단순화하였으며, HAGD 알고리즘은 고성능 컴퓨팅 환경과 병렬 프로그램의 특성에 맞추어 태스크 삽입 기법 혹은 묶음 태스크 복제 기법을 사용한다. 성능 평가 결과, 제안하는 알고리즘이 환경 특성과 관계없이 우수한 표준화한 전체 실행 시간을 제공하는 것을 확인하였다.
현재 수입차 차량의 등록대수가 해를 거듭할수록 증가하는 추세이다. 그에 맞춰 수입차와 같은 고급 차량을 정비하기 위한 차량 정비 업체의 환경 개선이 지속적으로 이루어지고 있다. 본 논문에서는 정비 차량의 고객 신뢰도를 제공하기 위한 스마트 차량 관리 시스템을 구현하기 위해 HSV 색상모델 기반의 키 프레임 추출 기법을 제안한다. 수리 차량의 입고 시 차량 번호판 인식 프로세스를 통해 차량의 번호판을 자동으로 인식 후, 이를 기준으로 차량의 수리 이력 확인 및 수리 요청을 처리한다. 차량 수리 동영상을 토대로 차량 수리 키 프레임을 추출하여 사용자의 스마트폰으로 제공하는 서비스를 구현한다. 아울러 제안하는 기법을 스마트 차량 관리 시스템에 적용함으로써 서비스의 우수성을 검증한다. 마지막으로 키 프레임 추출 기법의 성능을 향상시키기 위해 RGB 색상을 HSV 색상으로 변환하여 처리한다. 그 결과 제안된 방법의 키 프레임 추출을 위한 성능 평가에서 기존의 RGB 색상모델보다 HSV 색상모델이 재현율 측면에서 약 30% 더 우수함을 확인하였다.
장애 복구형 백본 네트워크에서 경로의 짧은 거리 및 빠른 전파 지연시간은 주 경로와 백업 경로의 설정시 활용될 수 있는 중요한 성능 인자이기에 이에 $k$-최단 분리 경로 개념은 이러한 백본 네트워크 환경에서 매우 중요하게 고려된다. 이에 본 논문에서는 선박 장비 간의 중복 메시지 전송 기능을 명세하는 IEC61162-410 표준이 적용된 장애 복구형 선박 백본 네트워크에서 $k$-최단 분리 경로 개념의 적합성을 비교 평가하였다. 성능 평가는 링크 용량, 주경로 및 백업 경로의 홉 및 거리, 트래픽 흐름의 균등 분포, 백업 경로의 장애 복구 시간, 그리고 물리 네트워크 토폴로지의 연결성 측면에서 수행되었다.
본 논문에서는 웹 검색의 성능 향상을 위해 질의어 의미별 사용자 선호도를 이용한 웹 페이지의 가중치 부여 방식을 제안한다. 일반적으로 검색엔진들은 검색 질의어와 웹 페이지의 어휘 비교에 의한 관련도 측정만을 사용하여 웹 페이지의 가중치를 부여한다. 웹과 같이 방대한 자료를 대상으로 검색을 할 경우 유사한 관련도를 가진 검색 결과가 매우 많으므로 어휘 비교만으로는 중요한 웹 페이지를 선별하기 어렵다. 본 논문에서는 질의어의 의미를 구분하도록 워드넷(WordNet)을 이용한 사용자 인터페이스를 구축하고, 사용자의 클릭 수를 각 웹 페이지의 가중치에 누적함으로써 다수 사용자의 검색 행위에 의한 묵시적 평가가 웹 페이지의 검색 순위에 반영되는 검색 시스템을 구현하였다. 클릭수의 누적에 있어서 질의 어 의미별로 가중치를 구분하여 저장함으로써 일반적인 검색엔진보다 정확한 검색이 되었으며, 웹 페이지의 범주별 가중치와 질의어의 의미별 사용자 선호도를 이용함으로써 검색 시스템의 성능을 향상시킬 수 있다는 것을 20개의 어휘에 관련된 41개의 의미들을 대상으로 실험한 결과로 확인하였다.
Korean mid- and upper-level aviation turbulence guidance (KTG) system is developed using the unified model (UM)-based regional data assimilation and prediction system (RDAPS) of the Korea Meteorological Administration. The KTG system includes three steps. First, the KTG system calculates a suite of diagnostics in the UM-RDAPS domain. Second, component diagnostics that have different units and numerical magnitudes are normalized into the values between 0 and 1, according to their own thresholds in the KTG system. Finally, normalized diagnostics are combined into one KTG predictor by measuring the weighting scores based on the probability of detection, which is calculated using the observed pilot reports (PIREPs) exclusively of moderate-or-greater (MOG) and null (NIL) intensities. To investigate the optimal performance of the KTG system, two types (RD-KTG and UM-KTG) of the KTG systems are developed and evaluated using the PIREPs over Korea and East Asia. Component diagnostics and their thresholds in the RD-KTG are founded on the 8-yrs (2002.12-2010.11) MM5-based RDAPS (previous version of the RDAPS; ${\Delta}x$ = 30 km) and PIREPs data, while those in the UM-KTG are based on the 6 months (2010.12-2011.5) UM-based RDAPS (${\Delta}x$ = 12 km) and PIREPs data. In comparison between the RD-KTG and UM-KTG, overall performance of the UM-KTG (0.815) is better than that of the RD-KTG (0.79) during the recent 6 months, because forecasting skill for the upper-level wind is higher in the UM-RDAPS than in the MM5-RDAPS. It is also found that the UM-KTG is more efficient than the RD-KTG according to the statistical evaluations and sensitivity tests to the number of component diagnostics.
항공기 착륙 시 발생하는 고무퇴적물은 젖은 노면에서의 표면 마찰력을 감소시키는 주원인으로 안전한 항공기 착륙을 위해 주기적인 제거를 실시하고 있다. 제거작업에 주로 사용되는 고압살수 방법은 고압의 물로 직접 표면을 타격함에 따라 표면 재료 유실의 원인이 되고 있다. 본 연구에서는 고무 제거시 살수 압을 상대적으로 낮추어 표면 파손을 저감시키고, 저수압에도 효율적으로 고무퇴적물을 제거할 수 있는 사전 처리제 개발을 진행하였다. 이를 위해 사전 처리제에 적합한 기초재료를 선정하여 성능 평가, 침투율 평가, 현장 적용성 평가를 진행하였다. 이를 토대로 기초재료의 성능 개선에 필요한 첨가제의 비율을 1차적으로 선정하였고, 포장 영향성 평가를 통해 최적배합을 도출하여 고무제거 사전처리제 개발을 완료하였다.
클라우드 데이터베이스와 같은 분산 시스템 환경에서는 균일한 서비스 품질을 보장하기 위해 꼬리 응답시간을 짧게 유지하는 것이 중요하다. 본 논문에서는 카산드라 데이터베이스를 대상으로, 긴 꼬리 응답시간에 해당하는 지연이 메모리 공간 부족으로 인해 발생한다는 것을 보이며, 이러한 지연이 메모리 공간 확보를 위해 버퍼에 저장된 데이터를 저장장치에 완전히 내려쓸 때까지 카산드라가 사용자의 요청을 받지 않기 때문임을 밝힌다. 버퍼에 저장된 데이터를 내려쓰는데 걸리는 시간은 저장장치 성능에 따라 결정되므로 SSD의 가바지 컬렉션으로 인한 성능 저하가 꼬리 응답시간을 더 길게 만들고 있음을 관찰하였다. 우리는 자바가상기계에서의 가비지 컬렉션과 SSD에서의 가비지 컬렉션을 함께 수행하여 SSD의 가비지 컬렉션 비용을 숨기는, SyncGC 기법을 제안한다. 실험 결과, SyncGC 기법을 통해 꼬리 응답시간인 $99.9^{th}$와 $99.9^{th}-percentile$을 각각 31%, 36% 줄일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.