• Title/Summary/Keyword: Performance Advancement

Search Result 387, Processing Time 0.029 seconds

A Study on Implementation of Automatic Evaluation System for Static Performance of 6 DOF MEMS Inertial Sensor (6자유도 MEMS 관성센서 정적성능 자동 평가 시스템 구현에 관한 연구)

  • Ji Won Park;Hussamud Din;Byeung Leul Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.62-66
    • /
    • 2023
  • With the advancement in technology and rapid increase in the demand for microelectromechanical systems (MEMS) based inertial measurement units (IMUs), high-volume production and test system remain a major challenge for the MEMS industry. To compete with the challenging market of Industry 4.0, here we developed an automatic test system to evaluate the performance of the ovenized IMU sensors as well as analyze the data. The automatic test system was developed by interfacing a commercial MEMS IMU (BMI 088) using LabVIEW. The BMI 088 was tested experimentally for long-term bias stability, ON/OFF bias repeatability, and root mean square (rms) noise. Furthermore, the data was analyzed through the developed test system. The results show that the automatic test system has improved the test time and reduced human effort. The developed automatic test system is a significant approach to MEMS research and development (R&D) to increase and improve the mass production of IMUs.

  • PDF

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Tribological Improvement of Lubricants Using Silicone Rubber Powders in Hydrogen Compressors

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.78-83
    • /
    • 2024
  • The development of eco-friendly alternative energy sources has become a global priority owing to the depletion of fossil fuels and an increase in environmental concerns. Hydrogen energy has emerged as a promising clean energy source, and hydrogen compressors play a crucial role in the storage and distribution of compressed hydrogen. However, harsh operating conditions lead to the rapid deterioration of conventional lubricants in hydrogen compressors, thereby necessitating the development of advanced lubrication technologies. This study introduces micrometer-sized silicone rubber powders as lubricant additives to enhance the lubrication performance of hydraulic oils in hydrogen compressors. We prepare silicone rubber powders by varying the ratio of the silicone rubber base to the curing agent and investigate their effects on interfacial properties, friction behavior, and wear characteristics. The findings reveal that the incorporation of silicone rubber powders positively influences the surface affinity, wettability, friction reduction, and wear resistance of the lubricants on the 304SS substrate. Moreover, we identify the optimal lubricant formulations, with a 15:1 ratio demonstrating the most effective friction reduction and a 5:1 ratio exhibiting the highest wear resistance. The controlled surface modification by the silicone rubber powder and the enhanced interfacial characteristics of the powder-containing lubricants synergistically contribute to the improved lubrication performance. These results indicate the potential of silicone rubber powder additives for the development of long-life lubrication solutions for hydrogen compressors and related applications, ultimately contributing to the advancement of sustainable energy technologies.

Reconstructible Electronic Block System for Public Performances' Stage (재구성 가능한 공연 무대를 위한 전자 마루 블럭 시스템)

  • Park, Jong-Ho;Kwon, O-Hung;Joung, Kwan-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.504-510
    • /
    • 2011
  • In the culture performance field, device technologies for public performances with new concept is on the rise with the advancement of science. Most designers make use of the performance devices to achieve powerful and dramatic effect in their performances. It increases the perfection of performance. Most of all, applying high technology to performances' stage leads to enhance the space efficiency of the limited stage as well as to enable us to run a fully unmanned performance. This paper proposes a reconstructible electric block system for public performances' stage to heighten the fantastic stage effect variously.

I/O Translation Layer Technology for High-performance and Compatibility Using New Memory (뉴메모리를 이용한 고성능 및 호환성을 위한 I/O 변환 계층 기술)

  • Song, Hyunsub;Moon, Young Je;Noh, Sam H.
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.427-433
    • /
    • 2015
  • The rapid advancement of computing technology has triggered the need for fast data I/O processing and high-performance storage technology. Next generation memory technology, which we refer to as new memory, is anticipated to be used for high-performance storage as they have excellent characteristics as a storage device with non-volatility and latency close to DRAM. This research proposes NTL (New memory Translation layer) as a technology to make use of new memory as storage. With the addition of NTL, conventional I/O is served with existing mature disk-based file systems providing compatibility, while new memory I/O is serviced through the NTL to take advantage of the byte-addressability feature of new memory. In this paper, we describe the design of NTL and provide experiment measurement results that show that our design will bring performance benefits.

The Impact of several management tools and techniques adoption on strong small business enterprises' Performance (경영기법 및 도구의 적용이 강소기업 경영성과에 미치는 영향분석)

  • Kim, Kyung-Ihl
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.7-12
    • /
    • 2016
  • This paper aims to examine the adoption of several management tools & techniques(MT&T) by the Strong Small Business Enterprises (SSBE) in Korea, In addition, the paper examines the impact of the adopted MT&T techniques on a company's overall performance. The paper used a questionnaires survey method to gather the required data. The paper used descriptive statistics, correlation and regression techniques to analyze the data. The paper found that benchmarking, BSC, IMS and TQM are among the MT&T techniques widely adopted by SSBE. In addition, the paper found that the adoption of MT&T techniques significantly influenced the companies' overall performance. More specifically, the paper found that the adoption of BSC significantly influenced that the companies' profitability, customer satisfaction, market position and sales growth for exisiting services and products. The findings this paper provide could be considered important and useful for advancement of companies adopting MT&T techniques to improve their performance.

Performance Improvement of Cumulus Parameterization Code by Unicon Optimization Scheme (Unicon Optimization 기법을 이용한 적운모수화 코드 성능 향상)

  • Lee, Chang-Hyun;kim, Min-gyu;Shin, Dae-Yeong;Cho, Ye-Rin;Yeom, Gi-Hun;Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.124-133
    • /
    • 2022
  • With the development of hardware technology and the advancement of numerical model methods, more precise weather forecasts can be carried out. In this paper, we propose a Unicon Optimization scheme combining Loop Vectorization, Dependency Vectorization, and Code Modernization to optimize and increase Maintainability the Unicon source contained in SCAM, a simplified version of CESM, and present an overall SCAM structure. This paper tested the unicorn optimization scheme in the SCAM structure, and compared to the existing source code, the loop vectorization resulted in a performance improvement of 3.086% and the dependency vectorization of 0.4572%. And in the case of Unicorn Optimization, which applied all of these, the performance improvement was 3.457% compared to the existing source code. This proves that the Unicorn Optimization technique proposed in this paper provides excellent performance.

Performance Improvement of SCAM Climate Model using PGI Compiler with OpenACC (SCAM 기상모델의 성능향상을 위한 PGI Compiler의 OpenACC 활용)

  • Lee, Chang-Hyun;Kang, Bol-Kyung;Chung, Sung-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.189-197
    • /
    • 2022
  • With the development of high-performance computing technology and the advancement of numerical model, it is possible to predict the better weather forecasting. The purpose of this paper is the performance improvement for the SCAM climate model for the model running time excluding the compilation time. Therefore, the model previously performed using the Intel Fortran Compiler was changed to PGI Fortran Compiler. To this end, we reconfigure system environment variables, reset compilation options, install dependencies SW and library, and modify source code. In addition, we proposed and applied the 'PGI Compile with OpenACC' method. As a result, when the compiler was changed from intel to PGI, it led to an improvement of 6.08% in running time and when the openACC method was applied, it led to an improvement of 43.05% in running time. This demonstrates that the PGI Compile with OpenACC method proposed in this paper leads to excellent performance.

A Study on AESA Antenna Performance Advancement for Seeker (탐색기용 AESA 안테나 성능 고도화 연구)

  • Youngwan Kim;Jong-Kyun Back;Hee-Duck Chae;Ji-Han Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.103-108
    • /
    • 2023
  • In this paper, a performance enhancement study of an AESA antenna that can be applied to a seeker that serves as the eye of a missile was conducted, and the performance of the antenna was verified through actual measurement. When designing an AESA antenna, the optimization of the active reflection coefficient must be considered during transmission due to the mutual coupling between radiators that inevitably occurs, and the selection of a radiator that can overcome the space limitation of the seeker with a small size/light weight is an important design consideration. Accordingly, optimization in terms of electrical performance and low-profile structure is required through research on array antennas for application to the AESA structure. The radiator designed and measured in this paper was designed as an SFN that can satisfy the low-profile structure while enhancing the performance of a general vivaldi antenna. Through this paper, it was confirmed that SFN has the same broadband characteristics as general vivaldi antennas and has optimized characteristics required for AESA antennas. The structure optimized through simulation confirmed the pattern characteristics and active reflection coefficient characteristics through the fabrication of actual proto-type antennas.

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.