• Title/Summary/Keyword: Percolation process

Search Result 52, Processing Time 0.026 seconds

Quantitative Determination of Organic Yield by Continuous Percolation Processes of Bio-wastes at K Composting Plant

  • Seo, Jeoung-Yoon;Jager, Johannes
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Percolation is the important process of extracting the soluble constituents of a fine mesh, porous substance by passage of a liquid through it. In this study, bio-wastes were percolated under various conditions through continuous percolation processes, and the energy potential of percolate was evaluated. The representative bio-wastes from the K composting plant in Darmstadt, Germany were used as the sample for percolation. The central objective of this study was to determine the optimal amount of process water and the optimum duration of percolation through the bio-wastes. For economic reasons, the retention time of the percolation medium should be as long as necessary and as short as possible. For the percolation of the bio-wastes, the optimal percolation time was 2 hr and maximum percolation time was 4 hr. After 2 hr, more than two-thirds of the organic substances from the input material were percolated. In the first percolation process, the highest yields of organic substance were achieved. The best percolation of the bio-wastes was achieved when the process water of 2 L for the first percolation procedure and then the process water of 1.5 L for each further percolation procedure for a total 8 L for all five procedures were used on 1,000 g fresh bio-waste. The gas formation potentials of 0.83 and $0.96Nm^3/ton$ fresh matter (FM) were obtained based on the percolate from 1 hr percolation of 1,000 g bio-waste with the process water of 2 L according to the measurement of the gas formation in 21 days (GB21). This method can potentially contribute to reducing fossil fuel consumption and thus combating climate change.

A Percolation-Based System Dynamics Model on the Process of Corporate Corruption (기업 부패과정에 대한 시스템다이내믹스 접근 - 퍼컬레이션 모형을 중심으로 -)

  • Park, Hun-Joon;Kim, Sang-Joon;Kim, Na-Jung
    • Korean System Dynamics Review
    • /
    • v.6 no.1
    • /
    • pp.33-70
    • /
    • 2005
  • This study explores the process of corporate corruption via a percolation-based system dynamics model. The preliminary model is an agent-based model constructed in the terms of the corruption networking between ego and other. In the model, the agents behave depending on percolation rules, which represent (1) passing on the corruption opportunities and (2) accepting it. To describe the percolation process in the networks, we develop a further complicated model by combining the basic model with the Bethe lattice. Through the complicated model, we suggest (1) the dynamics of the systemic corporate corruption, (2) 4 patterns of the corruption, and (3) the institutionalization of the corruption. These simulation results provide theoretical and practical implications.

  • PDF

전처리 공정에 따른 폐 신문지의 효소 가수분해 특성

  • Mun, Nam-Gyu;Lee, Jae-Hwan;Kim, Seong-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.459-462
    • /
    • 2000
  • The pretreatment of used newspaper for the enzymatic digestion preprocess was performed on a percolation reactor and a batch reactor. The test condition of percolation process was $170^{circ}C$, 60min, 1 mL/min, and 400psi, that of batch was $40^{circ}C$, 3hr. and latm Reaction solutions used in pretreatment process were aqueous ammonia, sulfuric acid, water, and hydrogen-peroxide as an oxidizing agent. As a result, the effect of pretreatment was similar to batch and percolation process, but the yield of enzymatic hydrolysis was higher in batch than percolation. This batch pretreatment enhanced enzymatic hydrolysis rate and increased glucose yield from about 15 to 20%. The inhibition factors influenced the rate of enzymatic hydrolysis was investigated, and the ink contented newspaper was the major factor.

  • PDF

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold (Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.644-648
    • /
    • 2009
  • Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

Effect of Alcohol Addition on Back-Extraction of BSA and Cytochrome c Using AOT Reverse Micellar System

  • Lee, Seong Sik;Lee, Bong Guk;Choe, Jin Seong;Lee, Jong Pal
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.897-902
    • /
    • 2001
  • The protein back-extraction processes were discussed from the viewpoint of the micelle-micelle interaction. Bovine serum albumin (BSA) suppressing the cluster formation of reverse micelle (positive value of ${\beta}pr)$ has the high back-extra cted fraction (Eb), but cytochrome c enhancing the formation of reverse micelle (negative value of ${\beta}pr)$ has the low back-extracted fraction, relatively. We have also examined quantitatively the effects of alcohol addition and protein solubilization on the percolation process of reverse micelle. The alcohols suppressing the formation of micellar cluster (high values of ${\beta}t)$, remarkably improved the back-extraction rates of BSA and cytochrome c. The values of ${\beta}t$, defined by the variation of percolation process, and the back-extraction behavior of proteins have a good linear correlation. These results indicate that the micelle-micelle interaction or micellar clustering plays an important role in the back-extraction process of proteins.

Dilute Acid Pretreatment of Woody Hemicellulose Using a Percolation Process (Percolation 공정에 의한 목질계 헤미셀룰로오스의 묽은산 전처리)

  • 염동문;김성배;박순철
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.312-319
    • /
    • 1998
  • The dilute-acid pretreatment/hydrolysis of hemicellulose in oak wood using a percolation reactor was investigated. The experimental conditions ranged 160∼180$^{\circ}C$ and 0.05∼0.2 wt.% sulfuric acid. XMG(xylan+mannan+galactan) recovery was higher when sulfuric acid was used as leaching solvent than water. Also it was important for high XMG recovery to keep leaching temperature higher after reaction. XMG recovery was decreased as the size of wood chips was increased. At an optimum condition (reaction condition= 170$^{\circ}C$, 0.1% sulfuric acid, 1ml/min, 10min, leaching condition=0.1% sulfuric acid, 2mL/min, 20 min), the product yield and the sugar concentration were about 92% and 2.7%, respectively.

  • PDF

Percolation Theory-Based Exposure-Path Prevention for 3D-Wireless Sensor Networks Coverage

  • Liu, Xiaoshuang;Kang, Guixia;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.126-148
    • /
    • 2015
  • Different from the existing works on coverage problems in wireless sensor networks (WSNs), this paper considers the exposure-path prevention problem by using the percolation theory in three dimensional (3D) WSNs, which can be implemented in intruder detecting applications. In this paper, to avoid the loose bounds of critical density, a bond percolation-based scheme is proposed to put the exposure-path problem into a 3D uniform lattice. Within this scheme, the tighter bonds of critical density for omnidirectional and directional sensor networks under random sensor deployment-a 3D Poisson process are derived. Extensive simulation results show that our scheme generates tighter bounds of critical density with no exposure path in 3D WSNs.

Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites

  • Nam, I.W.;Souri, H.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.217-231
    • /
    • 2016
  • The present work aims to develop piezoresistive sensors of excellent piezoresistive response attributable to change in nanoscale structures of multi-wall carbon nanotube (MWNT) embedded in cement. MWNT was distributed in a cement matrix by means of polymer wrapping method in tandem with the ultrasonication process. DC conductivity of the prepared samples exhibited the electrical percolation behavior and therefore the dispersion method adopted in this study was deemed effective. The integrity of piezoresistive response of the sensors was assessed in terms of stability, the maximum electrical resistance change rate, and sensitivity. A composite sensor with MWNT 0.2 wt.% showed the lowest stability and sensitivity, while the maximum electrical resistance change rate exhibited by this sample was the highest (96 %) among others and even higher than those found in the literature. This observation was presumably attributed by the percolation threshold and the tunneling effect. As a result of the MWNT content (0.2 wt.%) of the sensor being near the percolation threshold (0.25 wt.%), MWNTs were close to each other to trigger tunneling in response of external loading. The sensor with MWNT 0.2 wt.% was able to maintain the repeatable sensing capability while sustaining a vehicular loading on road, demonstrating the feasibility in traffic flow sensing application.