• 제목/요약/키워드: Percolation

검색결과 361건 처리시간 0.025초

양액재배용 팽연화 왕겨 배지의 이화학적 특성 구명 (Evaluation on the Physical and Chemical Properties of Expanded Rice Hulls as Hydroponic Culture Medium)

  • 김경희;임상현;남궁양일;유근창
    • 생물환경조절학회지
    • /
    • 제9권2호
    • /
    • pp.73-78
    • /
    • 2000
  • 본 연구에서는 유기물 재료로 구득이 쉽고 수량이 풍부하며 재료의 균일성이 좋은 왕겨를 팽연화 하여 양액재배용 배지 재료 사용하기 위해 적합한 조건을 탐색해 보았다. 팽연화 왕겨의 물리성은 CEC 37.0cmol.kg-1, 가비중 0.19g.㎤, -0.1 bar 상태에서 보수력 271.0으로 펄라이트보다 우수하였으나 흡수속도는 펄라이트에 크게 떨어지는 경향이었다. 팽연화 수준이 높아짐에 따라 보수력, 흡수속도 등 수분관련 물성이 좋아지는데 반해 입도가 작아지고 부숙속도가 빨라지는 변화가 있었고 재배중 부숙이 진행됨에 따라 급액 15일 이후부터 pH가 상승되며 15~20일 사이에 NO3 부족이 심화되어 작물에 스테레스를 주는 것으로 판단되었다. ERH a처리에서 당도가 펄라이트에 비해 약 1.0 。Brix정도 높고 수량의 유의성은 없었으므로 틈새간극 8mm, 날높이 3mm에서 생산된 팽연화 왕겨의 물성이 양액재배용 배지 재료로 사용하기에 적정하였다.

  • PDF

수도 품종간의 필요수량 차이에 관한 연구 (Studies on the Consumptive Use of Irrigated Water in Paddy Rice)

  • 김시원;오완석;김선주
    • 한국농공학회지
    • /
    • 제23권2호
    • /
    • pp.35-44
    • /
    • 1981
  • This experiment was conducted to find out the consumptive use of irrigated water for calculation of duty water in paddy rice. Tall statured Japonica rice varieties, Nongbaek (early), Jinheung (medium) and Akibare (late), and short statured Tongil typed varieties, Josaeng Tongil(early), Suweon 264 (medium) and Suweon 258(late) were planted on the experimental farm of Kon-Kuk University in 1979. The results obtained in this study were as follows: 1. During the experimental period, the daily mean temperature was almost similar, the relative humidity was higher as much as 2.8%, the amount of rain fall was 100mm less and the pan evaporation was 70mm less compared with those of 30 years average, respectively. 2. The paddy soil was silty loam, which was suitable for the rice cultivation. 3. Varietal differences were find out for plant height, culm length, number of tillers, number of panicles, heading date, matured grain ratio, 1000-grain weight and rough rice yield. This difference might he the cause of varietal difference of the consumptive use of irrigated water during the rice growing period. 4. The evapotranspiration was gradually increased after transplanting and showed the peak from booting to heading stage of rice varieties. The average evapotranspiration through the whole growing period was 5.67-5. 80mm/day for tall statured Japonica varieties, and 5.99-6. 39mm/day for short statured Tongil typed varieties. 5. The ratio of evapotranspiration to pan-evaporation through the whole growing period was 1.49-1.50 for Japonica varieties, and 1.60-1.66 for Tongil typed varies. 6. Average amount of percolation in paddy field was 3. 62mm/day through the whole growing period of rice plant. 7. K-value in Blaney & Criddle formula was 0.94-0.98 for Japonica varieties and 1.02-1.08 for Tongil typed varieties, and coefficient consumptive water use (Kc-value) was 0.95-1.02 for Japonica varieties and 1.04-1.12 for Tongil typed varieties in this study. The modified coefficient for consumptive water use, which was calculated from data collected through the country including this study, was as follows;

  • PDF

논벼의 최대용수시기와 순단위용수량의 결정에 대하여 (On the determination of the maximum water requirement Stage and the net unit duty of water in the rice fields)

  • 김철기;김재휘
    • 한국농공학회지
    • /
    • 제26권4호
    • /
    • pp.37-51
    • /
    • 1984
  • The purpose of this study is to find out the determination method of designed duty of water in the rice fields through the comparison of the net unit duty of water at the late reduction division to heading stage with that at the planting stage. The data used for analysing this problem are the data of precipitation and gauge evaporation observed by Cheong-ju Meterological Center, the coefficient of evapotranspiration by College of Agriculture, Chung Buk University and the data of transplanting progressing in Boun area. The results obtained from this analysis are summarized as follows. 1.The occurring year of 1/10 probability value for available precipitation, gauge evaporation and mean maximum daily evapotranspiration during growing season is the year of 1977. 2.The 1/10 probability values of mean maximum evapotranspiration per day under the production rate of 1, 400kg/l0a and 1, 500kg/10a based on the weight of dry matters are 9. 2mm/day and 9. 6mm/day, respectively. 3.The net unit duty of water required in the fields that the maximum planting rate exists is more than the one in the fields that the planting rate is uniform in the planting stage. 4.The determination of net unit duty of water in the late reduction division to heading stage or the planting stage depends upon the daily evapotranspiration and percolation rate in the late reduction division to heading stage or the water depth required for planting and daily consumptive use of water after planting at the planting stage. Therefore the use of figure 5-(1) to figure 5-(6) can easily make the determination of the designed net unit duty of water out of above two kinds of net unit duty of water.

  • PDF

매립지 차수재로서 자가치유재의 투수 및 강도특성 (Permeability and strength characteristics of Self-Sealing and Self-Beating materials as landfill liners)

  • 장연수;문준석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권1호
    • /
    • pp.41-51
    • /
    • 2002
  • 최근 국내 폐기물 매립지는 대규모의 부지를 조성할 수 있는 해안의 점토지반 상에 시공되고 있으며 차수층의 강도증진과 차수층 바닥을 통한 침출수의 유출을 방지하기 위해 시멘트 고화 차수재를 많이 사용하고 있다. 그러나 점토 차수층에 비해 큰 강성을 가지고 있는 시멘트 차수층은 매립되는 쓰레기 하중에 따라 침하가 동반되고, 부등 침하가 발생할 경우 차수층에 균열이 발생될 수 있다. 본 연구에서는 폐기물 침출수의 유출을 방지하기 위해 Go매립지 점토를 혼합하여 만든 자가형성(Self-Sealing) 및 자가치유(Self-Healing) 차수층의 적용성을 평가하기 위해 삼축투수시험과 일축압축시험을 실시하였으며, 국내에 폭 넓게 분포하는 화강풍화토를 혼합하여 SSSH 차수층을 시공할 경우, 본 공법이 적용 가능한지를 평가하기 위해 자가형성(Self-Sealing)에 대한 시험을 실시하였다. 그 결과 점토가 혼합된 SSSH 차수재의 투수계수는 폐기물 관리법에서 요구하는 기준치보다 작은 값을 갖고 있었으며 일축압축강도 역시 증가되는 경향을 나타내었고, 화강풍화토와 벤토나이트가 혼합된 SSSH 차수재는 점토만을 사용한 경우보다 좋은 개량효과를 보였다.

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

Micromorphological Features of Pan Horizon in the Soils Derived from Different Parent Materials

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.242-248
    • /
    • 2014
  • We have five soil series of pan soils in South Korea out of 391 series: Gangreung, Bugog, Yeongog, Jangweon, and Pogog. Productivity decreases in pan soils as pan horizons impede percolation and capillary rise of water and interrupt root extension. This study was performed to investigate pedogenic processes of pan soils mainly located in footslope and river terrace by analyzing physicochemical properties and soil micro-morphology. Korean pan soils belong to Alfisols, Ultisols, or Inceptisols and have udic or aquic soil moisture regime, mesic temperature regime, and mixed mineral substances. Texture of pan horizons selected for the present study was mainly silty clay loam with clay contents ranging from 26.3 to 45.3%. Bulk density of the pan horizons ranged from 1.4 to $2.1Mg\;m^{-3}$ and their soil structure were subangular or angular structure. In terms of micro-morphological structure, Bt horizon of Gangreung series was formed as platy and striated b-fabric structure possibly affected by uplift of coastal terrace following clay sedimentation by flood. Jangweon series showed micro-morphology of massive structure and crystallic b-fabric as macropores between coarse debris established by debris fall in slope were filled with silt-sized particles. The Bt horizons having massive structure and striated b-fabric in Yeongog, Pogog, and Bugog series implies that those horizons experienced horizontal mass flow after clay accumulation.

신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서 (Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes)

  • 김강현;차재경;김종만
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

APEX 모델을 이용한 콩 재배 밭 전환 논의 물수지 특성 평가 (Water Budget Assessment for Soybean Grown in Paddy Fields Converted to Uplands Using APEX Model)

  • 최순군;정재학;엽소진;김명현;김민경
    • 한국농공학회논문집
    • /
    • 제63권4호
    • /
    • pp.55-64
    • /
    • 2021
  • The expansion of upland crop cultivation in rice paddy fields is recommended by the Korean government to solve the problem of falling rice price and reduction of rice farmer's income due to oversupply of rice. However, water use efficiency is significantly influenced by the land use change from paddy field to upland. Therefore, this study aimed to evaluate the water budget of soybean grown in using APEX (Agricultural Policy and Environmental eXtender) model. The amount of runoff was measured in a test bed located in Iksan, Jeollabu-do and used to calibrate and validate the simulated runoff by APEX model. From 2019 to 2020, the water budget of soybean grown in uplands were estimated and compared with the one grown in paddy fields. The calibration result of AP EX model for runoff showed that R2 (Coefficient of determination) and NSE (Nash-Sutcliffe efficiency) were 0.90 and 0.89, respectively. In addition, the validated results of R2 and NSE were 0.81 and 0.62, respectively. The comparative study of each component in water budget showed that the amounts of evapotranspiration and percolation estimated by APEX model were 549.1 mm and 375.8mm, respectively. The direct runoff amount from upland was 390.1 mm, which was less than that from paddy fields. The average amount of irrigation water was 28.7 mm, which was very small compared to the one from paddy fields.

에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구 (Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films)

  • 김익수;구상모;박철환;신원호;이동원;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

탄소섬유/고무 복합재료의 압저항과 니켈입자의 영향 (Evaluation of the Effect of Nickel Powder on the Piezoresistivity Behavior of Carbon-Fiber/Rubber Composites)

  • 임동진
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.412-420
    • /
    • 2021
  • 본 연구에서는 탄소 단섬유를 천연고무 기지에 혼합한 탄소섬유/고무 시편과 그에 니켈입자를 추가한 탄소섬유-니켈입자/고무 시편의 초기 전기전도도를 측정하고, 그 시편에 압축스트레인을 가하면서 변화하는 전기전도도를 측정하였다. 실험을 통해 탄소섬유의 체적분율 및 추가된 니켈입자, 외부스트레인 등이 전기전도도에 미치는 영향을 관찰하였다. 탄소섬유 체적분율은 작은 차이로도 시편의 전기전도도의 변화에 매우 큰 역할을 하였고, 외부스트레인에 따른 탄소섬유 재배열에 의해 압저항이 증가하는 것을 알 수 있었다. 또한, 니켈입자의 추가는 탄소섬유가 임계체적분율 이상인 시편에서 전기전도도를 개선하는데 기여하는 것을 볼 수 있었는데, 이로부터 외부변형에 따른 탄소섬유의 재배열에 의해 압저항이 증가하는 현상을 상쇄하는 효과가 있음을 확인하였다.