• Title/Summary/Keyword: Perceptual Constancy

Search Result 5, Processing Time 0.024 seconds

SPATIAL EXPLANATIONS OF SPEECH PERCEPTION: A STUDY OF FRICATIVES

  • Choo, Won;Mark Huckvale
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.399-403
    • /
    • 1996
  • This paper addresses issues of perceptual constancy in speech perception through the use of a spatial metaphor for speech sound identity as opposed to a more conventional characterisation with multiple interacting acoustic cues. This spatial representation leads to a correlation between phonetic, acoustic and auditory analyses of speech sounds which can serve as the basis for a model of speech perception based on the general auditory characteristics of sounds. The correlations between the phonetic, perceptual and auditory spaces of the set of English voiceless fricatives /f $\theta$ s $\int$ h / are investigated. The results show that the perception of fricative segments may be explained in terms of 2-dimensional auditory space in which each segment occupies a region. The dimensions of the space were found to be the frequency of the main spectral peak and the 'peakiness' of spectra. These results support the view that perception of a segment is based on its occupancy of a multi-dimensional parameter space. In this way, final perceptual decisions on segments can be postponed until higher level constraints can also be met.

  • PDF

Effects of Object Size and Viewing Distance on Duration Perception (대상의 크기 및 관찰거리가 시간 지각에 미치는 영향)

  • Lee, WonSeob;Kim, ShinWoo;Li, HyungChul O.
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.91-102
    • /
    • 2018
  • Although accurate time perception is necessary to properly respond to the environment, it was discovered that non-temporal features also affect time perception. Previous studies have identified various factors that affect time perception, but there was no attempt to directly investigate the possible effects of the distance between participants and the stimuli on time perception. The current study examined the effects of viewing distance on time perception, by considering the retinal, physical, and perceived size of the stimuli. The viewing distance had no effect when either the physical size or the perceived size of the stimulus was the same. Viewing distance was found only to have an effect when the retinal size of the stimulus was the same. This effect might be a size effect rather than a distance effect because as the viewing distance increases the size should also increase to maintain the retinal size. These results imply that temporal perceptual constancy is preserved irrespective of the viewing distance, when distance information is not limited.

Effects of Size Illusion According to Distance Information Restriction on Time Perception (거리 정보 제한에 따른 크기 착시가 시간 지각에 미치는 영향)

  • Kim, Min-Kyu;Lee, Won-Seob;Kim, Shin-Woo;Li, Hyung-Chul O.
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • IThe perception of sub-second duration through the visual sensory system is affected by non-temporal characteristics (factors other than the duration of the stimulus). However, studies have shown that if distance information is abundant and size constancy maintained, the duration of the target is constantly perceived. The current study examined the relationship between size and time perception constancy in a three-dimensional environment with limited distance information. A device was constructed to limit the participants' bilateral and monocular cues. This prevented participants from maintaining size constancy, resulting in size illusions that could not accurately perceive physical size. In Experiment 1, the size of the physical stimulus of reference and test stimuli were the same at all viewing distances. The results suggest that, despite the same physical size, stimuli with close observations were perceived to be greater and lasted longer. In Experiment 2, the retinal size of the reference stimuli and test stimuli was controlled equally at all viewing distances. As a result, although the physical size of the stimuli increased as the observation increased, the perceived size of all the stimuli was the same. Therefore, the duration of the target was constantly perceived at all viewing distances. The results of this study demonstrate that even when distance information is limited, time perception is affected by the perceived size of the object. It also suggests that when rich distance information exists, the duration of the object can be constantly perceived even if the observation distance varies.

Super-Pixels Generation based on Fuzzy Similarity (퍼지 유사성 기반 슈퍼-픽셀 생성)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2017
  • In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.

Effect of Visual Perception by Vision Therapy for Improvement of Visual Function (시각기능 개선을 위한 시기능훈련이 시지각에 미치는 영향)

  • Lee, Seung Wook;Lee, Hyun Mee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.491-499
    • /
    • 2015
  • Purpose: This study was to examine how decline of visual function affects visual perception by assessing visual perception after improving visual function through visual training, and observing the change in the cognitive ability of visual perception. Methods: This study analyzes the visual perceptual evaluation (TVPS_R) of 23 children below age 13($8.75{\pm}1.66$) who have visual abnormalities, and improves visual function after conducting vision training (vision therapy) of the children. Results: Convergence increased from average $3.39{\pm}2.52{\Delta}$ (prism) to $13.87{\pm}6.04{\Delta}$ in the measurement of long-distance disparate points, and from average $5.48{\pm}3.42{\Delta}$ to $18.43{\pm}7.58{\Delta}$ in the measurement of short-distance disparate points. Short-distance diplopia points increased from $25.87{\pm}7.33cm$ to $7.48{\pm}2.87cm$, and as for accommodative insufficiency, short-distance blur points increased from $19.57{\pm}7.16cm$ to $7.09{\pm}1.88cm$. In the visual perceptual evaluation performed before and after improving visual function, 6 items except visual memory showed statistically significant improvement. By order of significant improvement, response gap was highest with $17.74{\pm}16.94$(p=0.000) in visual closure, followed by $15.65{\pm}17.11$(p=0.000) in visual sequential-memory, $13.65{\pm}16.63$(p=0.001) in visual figure-ground, $12.74{\pm}18.41$(p=0.003) in visual form-constancy, $6.48{\pm}10.07$ (p=0.005) in visual discrimination, and $4.17{\pm}9.33$(p=0.043) in visual spatial-relationship. In the visual perception quotient that added up these scores, the response gap was $15.22{\pm}8.66$(p=0.000), showing a more significant result. Conclusions: Vision training enables efficient visual processing and improves visual perceptual ability. It was confirmed that improvement of visual function through visual training not only improves abnormal visual function but also affects visual perception of children such as learning, perception and recognition.