• Title/Summary/Keyword: Perception of Loss

Search Result 222, Processing Time 0.018 seconds

Study of Patient Teaching in The Clinical Area (간호원의 환자교육 활동에 관한 연구)

  • 강규숙
    • Journal of Korean Academy of Nursing
    • /
    • v.2 no.1
    • /
    • pp.3-33
    • /
    • 1971
  • Nursing of today has as one of its objectives the solving of problems related to human needs arising from the demands of a rapidly changing society. This nursing objective, I believe, can he attained by the appropriate application of scientific principles in the giving of comprehensive nursing care. Comprehensive nursing care may be defined as nursing care which meets all of the patient's needs. the needs of patients are said to fall into five broad categories: physical needs, psychological needs, environmental needs, socio-economic needs, and teaching needs. Most people who become ill have adjustment problems related to their new situation. Because patient teaching is one of the most important functions of professional nursing, the success of this teaching may be used as a gauge for evaluating comprehensive nursing care. This represents a challenge foe the future. A questionnaire consisting of 67 items was distributed to 200 professional nurses working ill direct patient care at Yonsei University Medical Center in Seoul, Korea. 160 (80,0%) nurses of the total sample returned completed questionnaires 81 (50.6%) nurses were graduates of 3 fear diploma courser 79 (49.4%) nurses were graduates of 4 year collegiate nursing schools in Korea 141 (88,1%) nurses had under 5 years of clinical experience in a medical center, while 19 (11.9%) nurses had more than 5years of clinical experience. Three hypotheses were tested: 1. “Nurses had high levels of concept and knowledge toward patient teaching”-This was demonstrated by the use of a statistical method, the mean average. 2. “Nurses graduating from collegiate programs and diploma school programs of nursing show differences in concepts and knowledge toward patient teaching”-This was demonstrated by a statistical method, the mean average, although the results showed little difference between the two groups. 3. “Nurses having different amounts of clinical experience showed differences in concepts and knowledge toward patient teaching”-This was demonstrated by the use of a statistical method, the mean average. 2. “Nurses graduating from collegiate programs and diploma school programs of nursing show differences in concepts and knowledge toward patient teaching”-This was demonstrated by a statistical method, the mean average, although the results showed little difference between the two groups. 3. “Nurses having different amounts of clinical experience showed differences in concepts and knowledge toward patient teaching”-This was demonstrated by the use of the T-test. Conclusions of this study are as follow: Before attempting the explanation, of the results, the questionnaire will he explained. The questionnaire contained 67 questions divided into 9 sections. These sections were: concept, content, time, prior preparation, method, purpose, condition, evaluation, and recommendations for patient teaching. 1. The nurse's concept of patient teaching: Most of the nurses had high levels of concepts and knowledge toward patient teaching. Though nursing service was task-centered at the turn of the century, the emphasis today is put on patient-centered nursing. But we find some of the nurses (39.4%) still are task-centered. After, patient teaching, only a few of the nurses (14.4%) checked this as “normal teaching.”It seems therefore that patient teaching is often done unconsciously. Accordingly it would he desirable to have correct concepts and knowledge of teaching taught in schools of nursing. 2. Contents of patient teaching: Most nurses (97.5%) had good information about content of patient teaching. They teach their patients during admission about their diseases, tests, treatments, and before discharge give nurses instruction about simple nursing care, personal hygiene, special diets, rest and sleep, elimination etc. 3. Time of patient teaching: Teaching can be accomplished even if there is no time set aside specifically for it. -a large part of the nurse's teaching can be done while she is giving nursing care. If she believes she has to wait for time free from other activities, she may miss many teaching opportunities. But generally proper time for patient teaching is in the midmorning or midafternoon since one and a half or two hours required. Nurses meet their patients in all stages of health: often tile patient is in a condition in which learning is impossible-pain, mental confusion, debilitation, loss of sensory perception, fear and anxiety-any of these conditions may preclude the possibility of successful teaching. 4. Prior preparation for patient teaching: The teaching aids, nurses use are charts (53.1%), periodicals (23.8%), and books (7.0%) Some of the respondents (28.1%) reported that they had had good preparation for the teaching which they were doing, others (27.5%) reported adequate preparation, and others (43.8%) reported that their preparation for teaching was inadequate. If nurses have advance preparation for normal teaching and are aware of their objectives in teaching patients, they can do effective teaching. 5. Method of patient teaching: The methods of individual patient teaching, the nurses in this study used, were conversation (55.6%) and individual discussion (19.2%) . And the methods of group patient teaching they used were demonstration (42.3%) and lecture (26.2%) They should also he prepared to use pamphlet and simple audio-visual aids for their teaching. 6. Purposes of patient teaching: The purposes of patient teaching is to help the patient recover completely, but the majority of the respondents (40.6%) don't know this. So it is necessary for them to understand correctly the purpose of patient teaching and nursing care. 7. Condition of patient teaching: The majority of respondents (75.0%) reported there were some troubles in teaching uncooperative patients. It would seem that the nurse's leaching would be improved if, in her preparation, she was given a better understanding of the patient and communication skills. The majority of respondents in the total group, felt teaching is their responsibility and they should teach their patient's family as well as the patient. The place for teaching is most often at the patient's bedside (95.6%) but the conference room (3.1%) is also used. It is important that privacy be provided in learning situations with involve personal matters. 8. Evaluation of patient teaching: The majority of respondents (76.3%,) felt leaching is a highly systematic and organized function requiring special preparation in a college or university, they have the idea that teaching is a continuous and ever-present activity of all people throughout their lives. The suggestion mentioned the most frequently for improving preparation was a course in patient teaching included in the basic nursing program. 9. Recommendations: 1) It is recommended, that in clinical nursing, patient teaching be emphasized. 2) It is recommended, that insertive education the concepts and purposes of patient teaching he renewed for all nurses. In addition to this new knowledge, methods and materials which can be applied to patient teaching should be given also. 3) It is recommended, in group patient teaching, we try to embark on team teaching.

  • PDF

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.