• Title/Summary/Keyword: Percent elongation

Search Result 59, Processing Time 0.02 seconds

Radiation Crosslinking and Shrinkable Properties of PVC (PVC의 방사선 가교와 열수축 특성)

  • Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.341-348
    • /
    • 1992
  • PVC was compounded with various crosslinking agents, plasticizers and acrylonitrile butadiene rubber(NBR) to evaluate their effects on the radiation gel percent, elongation at break, heat distortion and heat shrinkage. Gel yield of PVC increased with increasing unsaturation levels per molecular weight of crosslinking agents while PVC containing NBR was more sensitive to crosslinking than PVC itself regardless of the types of crosslinking agents and plasticizers. It was found that gel percent was increased with increasing radiation dose, while heat distortion was decreased with increasing gel percent. Heat shrinkage was increased with decreasing stretching temperature and increasing annealing temperature.

  • PDF

Genetic phenomena for the pb and zu tolerance in plants (식물의 납과 아연의 내성에 관한 유전현상)

  • Yun, Jeoung-Ok;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 1992
  • Pb, Zn tolerance of phaseolus multiflorus was investigated, based on the elongation of root and stem, pollen Germination and progeny quality in various pb, zn concentrations. The result obtained by water culture showed that the growth of roots and steams of phaseolus multiflorus from pb-zn mine site is less inhivited than that of the control site. The flower of phaseolus multiflorus from which pollen was taken were grown without added pb, zn and percent germination of pollen observed in a range of pb, zn concentrations. The percent germination of pollen from pb-zn mine site was higher than the control site. phaseolus multiflorus collected at a pb-zn mine site and the control site was site were grown at different pb, zn concentrations, its progeny was retreated with same concentrations of pb-zn mine site was more vigorous than the control site. thus, pb-zn tolerance was able to expressed in both pollen and sporophytes.

  • PDF

A Survey of Old-field Herbs for Susceptibility to Phenolic Compounds (페놀화합물에 대한 묵밭 초본식물의 감수성)

  • Stowe, L. Gordon;Kil, Bong-Seop;Yim, Yang-Jai
    • Journal of Plant Biology
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 1987
  • Phenolic compounds, p-coumaric and p-hydroxybenzoic acids, known as inhibitors for development and growth of many pioneer species on early stage of succession were used for the test fo susceptibility in various herbs collected from abandoned agricultural fields in the vicinity of Amherst(U. S. A.). The percent inhibition was generally greater for p-coumaric acid than for p-hydroxybenzoic acid. Concentrations of 5$\times$10-5 and 5$\times$10-4M generally had no significant effects, but at 5$\times$10-3M was inhibitory to germination and growth of tested species. And the percent inhibition caused by the two phenolics was correlated (r=.843, p<.01). Also the indices of resistance for germination and elongation were significant (r=.695, p<.01) in this study. While Cirsium and Lepidium invading species of early stage of succession were sharply susceptible for toxic activity by phenolic acids.

  • PDF

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

Variation in Properties of Seawater Flooded and Non-Flooded CSPE (해수범람 전·후의 CSPE 특성변화)

  • Lee, Jeong-U;Kim, In-Yong;Ji, Seong-Hyun;Jeon, Hwang-Hyun;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1724-1729
    • /
    • 2015
  • Chlorosulfonated polyethylene (CSPE) was not flooded seawater and flooded seawater & freshwater for 5 days, respectively, and these samples are referred to as BSF(before seawater flooding) and ASFF(after seawater & freshwater flooding), respectively. The apparent density, dissipation factor, relative permittivity, melting temperature, dielectric breakdown time and increased time of applied voltage are higher than those of BSF, but the insulating resistance, dielectric strength, percent elongation and glass transition temperature of ASFF are lower than those of BSF. The differential temperature of those is $0.026{\sim}0.028(^{\circ}C)$ after AC and DC voltage is applied to ASFF, respectively, and the differential temperature of those is $0.013{\sim}0.037(^{\circ}C)$ after AC and DC voltage is applied to BSF, respectively. In the case AC and DC voltage is applied to ASFF as well as BSF, the variations in temperature of AC voltage are higher than those of DC voltage. It is investigated that dielectric loss due to dissipation factor ($tan{\delta}$) is related to electric dipole conduction current. It is certain that the ionic (electron or hole) leakage current was increased by conducting ions such as $Na^+$, $Cl^-$, $Mg^{2+}$, $SO_4^{2-}$, $Ca^{2+}$ and $K^+$, those are related to cured atoms of O and S that relatively increased after seawater flooding.

Effect of Fiber Friction, Yarn Twist, and Splicing Air Pressure on Yarn Splicing Performance

  • Das A.;Ishtiaque S. M.;Parida Jyoti R.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.72-78
    • /
    • 2005
  • The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level facto­rial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parame­ters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.

Study on the Physical Property of Soft Film for Greenhouse (시설하우스용 연질필름의 물리적 특성에 관한 연구)

  • 장유섭;한길수;김승희;정두호;김기철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1996
  • This study was performed to induce a quality improvement and standardization of materials used for greenhouse. For this purpose, physical and mechanical properties of agricultural films for greenhouse were measured by kinds and thickness of the films. The properties are composed of impact, tensile, tear propagation strength and light transmittance. The results were summarized as follows. 1. At the impact test result of the falling dart, the thicker the film, the greater the impact strength of soft film. The impact weight at 50 percents is from 158g to 213g and the strength of low density polyethylene(LDPE) film is higher than the rest of any other films. 2. Seeing the leveling of the impact rupture, maximum impact weight which was ruptured very little ranges from 62g to 192g. The impact strength of 0.1mm films was higher than that of 0.05mm as from 1.8 to 3.2 times. 3. Tensile weight covers from 0.95kg to 2.22kg in the test materials, and the weight of lengthwise film is larger than that of width. LDPE film has high value of tensile weight. Elongation range is from 345 to 102 percent and lengthwise elongation is greater than width as much as from 1.4 to 2.7 times. 4. Tea. propagation strength ranges from 80.5kg/cm to 121.7kg/cm, and unlike which of LDPE film has high value, EVA film has low value in the films tested. The width strength is higher than the lengthwise. 5. The light transmittance of the soft film is about 78-92 percent in the range of ultraviolet ray, but has high value in the visible ray range.

  • PDF

Effects of Interrupted Wetness Periods on Conidial Germination, Germ Tube Elongation and Infection Periods of Botryosphaeria dothidea Causing Apple White Rot

  • Kim, Ki Woo;Kim, Kyu Rang;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Responses of Botryosphaeria dothidea to interrupted wetness periods were investigated under in vivo and in vitro conditions. Conidia of B. dothidea were allowed to germinate on apple fruits under wetting condition at $25^{\circ}C$ for 5 hr. They were air-dried for 0, 1, 2 or 4 hr, and then rewetted at $25^{\circ}C$ for 5 hr. Following an initial wetness period of 5 hr, 83% of the conidia germinated. The percent conidial germination increased to 96% when wetting was extended continuously another 5 hr. However, no further conidial germination was observed when wetting was interrupted by dry periods of 1, 2 and 4 hr, resulting in 83, 81 and 82%, respectively. The mean length of the germ tubes was $37{\mu}m$ after 5 hr of wetting and elongated to $157{\mu}m$ after 10 hr of continuous wetting. On the other hand, interruption of wetting by a dry period of 1 hr or longer after the 5 hr of initial wetting arrested the germ tube elongation at approximately $42{\mu}m$ long. Prolonged rewetting up to 40 hr did not restore germ tube elongation on slide glasses under substrate treatments. Model simulation using weather data sets revealed that ending infection periods by a dry period of at least 1 hr decreased the daily infection periods, avoiding the overestimation of infection warning. This information can be incorporated into infection models for scheduling fungicide sprays to control apple white rot with fewer fungicide applications.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Effect of Metallocene-catalyzed Polyethylene on the Rheological and Mechanical Properties of Poly(phenylene sulfide)/Polyethylene Blends

  • Lee, Bo-Sun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • Blends of poly(phenylene sulfide) (PPS) and polyethylene, either linear low density polyethylene (LLDPE) or metallocene-catalyzed polyethylene (MPE), that were prepared by melt blending, were investigated. From the rheological properties as determined by capillary rheometry, the melt viscosity of both PPS/LLDPE and PPS/MPE blends was low when PE was in dispersed phase, but high melt viscosity was observed for both blends with PPS in dispersed phase. Significant differences depending on the composition were found in the mechanical properties such as percent elongation at break and notched Izod impact strength. In addition, dispersed phase morphology of the blends was analyzed by a scanning electron microscope (SEM), together with brief discussion about the difference between them.