• Title/Summary/Keyword: Peptide-Enzyme Interaction

Search Result 17, Processing Time 0.022 seconds

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.

The Effect of the Addition of Encapsulated Collagen Hydrolysate on Some Quality Characteristics of Sucuk

  • Palamutoglu, Recep;Saricoban, Cemalettin
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.807-818
    • /
    • 2016
  • The effect of addition commercial fish collagen hydrolysate and encapsulated fish collagen hydrolysate on the quality characteristics of sucuk (a traditional Turkish dry-fermented sausage) was investigated. Fish collagen hydrolysates were encapsulated with maltodextrin (MD) which has two different dextrose equivalent (12DE and 19 DE), with two different types of core/coating material ratios (10% peptide : 90% MD, 20% peptide : 80% MD). Than six group of sucuk dough (control, peptide, MD1210, MD1220, MD1910, MD1920) prepared and naturally fermented. The effects of the ripening period (28 d), treatment (peptide and encapsulated peptide addition) 'ripening period ${\times}$ treatment' interaction on sucuk's pH, lactic acid contents, $a_w$ values and moisture contents were statistically significant (p<0.01). The pH, moisture and $a_w$ decrease and lactic acid concentration increses during ripening period. The highest pH was observed with peptide added group (5.41), and encapsulated peptide added groups (4.76-4.77) were lower than the control group (5.26). Lactic acid concentration was affected from treatment and all treatment groups lactic acid concentration (0.185-0.190%) were higher than the control group (0.164%). Antioxidant and Angiotensin converting enzyme inhibition activities of water soluble protein extracts were significantly (p<0.01) increased during ripening time. Antioxidant activity reached the highest level at $28^{th}$ d. There was no significant increase observed after fermentation for both activities. Antioxidant activity of encapsulated peptide added (%39.56-40.48) groups were higher than control (34.28%) and peptide added (33.99%) groups except MD1920 (38.30%). The effect of the ripening period of the sucuk samples on TBA values was found to be statistically significant (p<0.01) while treatment and 'ripening period ${\times}$ treatment' interaction were not to be significant (p<0.05). The value of hardness was the highest in the encapsulated peptide added groups (29.27, 35.83 N), and it was 20.40 N and 15.41 N in the peptide added group and the control group respectively.

3D-QSAR of Angiotensin-Converting Enzyme Inhibitors: Functional Group Interaction Energy Descriptors for Quantitative Structure-Activity Relationships Study of ACE Inhibitors

  • Kim, Sang-Uk;Chi, Myung-Whan;Yoon, Chang-No;Sung, Ha-Chin
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.459-467
    • /
    • 1998
  • A new set of functional group interaction energy descriptors relevant to the ACE (Angiotensin-Converting Enzyme) inhibitory peptide, QSAR (Quantitative Structure Activity Relationships), is presented. The functional group interaction energies approximate the charged interactions and distances between functional groups in molecules. The effective energies of the computationally derived geometries are useful parameters for deriving 3D-QSAR models, especially in the absence of experimentally known active site conformation. ACE is a regulatory zinc protease in the renin-angiotensin system. Therapeutic inhibition of this enzyme has proven to be a very effective treatment for the management of hypertension. The non bond interaction energy values among functional groups of six-feature of ACE inhibitory peptides were used as descriptor terms and analyzed for multivariate correlation with ACE inhibition activity. The functional group interaction energy descriptors used in the regression analysis were obtained by a series of inhibitor structures derived from molecular mechanics and semi-empirical calculations. The descriptors calculated using electrostatic and steric fields from the precisely defined functional group were sufficient to explain the biological activity of inhibitor. Application of the descriptors to the inhibition of ACE indicates that the derived QSAR has good predicting ability and provides insight into the mechanism of enzyme inhibition. The method, functional group interaction energy analysis, is expected to be applicable to predict enzyme inhibitory activity of the rationally designed inhibitors.

  • PDF

Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools

  • Choi, Joon-Seok;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.

Dendritic Cells Induce Specific Cytotoxic T Lymphocytes against Prostate Cancer TRAMP-C2 Cells Loaded with Freeze-thaw Antigen and PEP-3 Peptide

  • Liu, Xiao-Qi;Jiang, Rong;Li, Si-Qi;Wang, Jing;Yi, Fa-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.571-578
    • /
    • 2015
  • Prostate cancer is the most common cancer in men. In this study, we investigated immune responses of cytotoxic T lymphocytes (CTLs) against TRAMP-C2 prostate cancer cells after activation by dendritic cells (DCs) loaded with TRAMP-C2 freeze-thaw antigen and/or PEP-3 peptide in vitro. Bone marrow-derived DC from the bone marrow of the C57BL/6 were induced to mature by using the cytokine of rhGM-CSF and rhIL-4, and loaded with either the freeze-thaw antigen or PEP-3 peptide or both of them. Maturation of DCs was detected by flow cytometry. The killing efficiency of the CTLs on TRAMP-C2 cells were detected by flow cytometry, CCK8, colony formation, transwell migration, and wound-healing assay. The levels of the IFN-${\gamma}$, TNF-${\beta}$ and IL-12 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the unloaded DCs, the loaded DCs had significantly increased expression of several phenotypes related to DC maturation. CTLs activated by DCs loaded with freeze-thaw antigen and PEP-3 peptide had more evident cytotoxicity against TRAMP-C2 cells in vitro. The secretion levels of IFN-${\gamma}$, TNF-${\beta}$ and IL-12, secreted by DCs loaded with antigen and PEP-3 and interaction with T cells, were higher than in the other groups. Our results suggest that the CTLs activated by DCs loaded with TRAMP-C2 freeze-thaw antigen and PEP-3 peptide exert a remarkable killing efficiency against TRAMP-C2 cells in vitro.

Production of polyclonal anti-$\beta$-adrenergic receptor antibody and it′s effects on receptor ligand binding

  • Kim, Hee-Jin;Shin, Chan-Young;Noh, Min-Su;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.86-86
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently by the use of specific anti-receptor antibodies. A 14-mer peptide (from Phe102 to Leu115 of ${\beta}$2-adrenergic receptor) was synthesized and this peptide was coupled to carrier protein Keyhole Limpet Hemocyanin(KLH) by glutaraldehyde method. A 0.5mg of KLH-coupled peptide was emulsified with equal volume of complete Freund's adjuvant and injected via popliteal lymph node to each of the three Newzealnd White rabbits. Booster injections were repeated at 4 weeks interval for three times with incomplete Freund's adjuvants. One week after the final injection, serum was prepared from ear artery. Nonspecific immunoglobulins were removed by passing the serum through KLH-Sepharose 6B affinity matrix and further by incubation with bovine lung aceton powder. The titer of the antibody for synthetic peptide which was determined by enzyme linked immunosorbent assay(ELISA) was about l/l,000. The antibody produced in this study revealed 67kDa protein band in the western blot of partially purified guinea pig lung ${\beta}$-adrenergic receptor preparation. The antibody inhibited ${\beta}$-adrenergic antaginist [3H] Dihydroalprenolol binding to soluble ${\beta}$-adrenergic receptor by 25% while control sera did not show any inhibitory effects, The result of this study suggests that the peptide sequence selected in this study may play some important roles in adrenergic receptor-ligand interaction.

  • PDF

Analysis of the Potent Platelet Glycoprotein IIb-IIIa Antagonist from Natural Sources

  • Kang, In-Cheol;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.515-518
    • /
    • 1998
  • Adhesive interaction of the platelet glycoprotien IIb-IIIa (GP IIb-IIIa) with a plasma protein, such as fibrinogen, plays an important role in thrombosis and hemostasis. The specific sequence Arg-Gly-Asp (RGD) is critical for the binding of fibrinogen to platelet. To examine and characterize the GP IIb-IIIa antagonist from natural sources, we have developed a simple enzyme-linked immunosorbant assay (ELISA) system. The GP IIb-IIIa complex was purified to homogeneity from platelet Iysates by the combination of two affinity chromatographic methods using the synthetic RGD peptide (GRGDSPK)-immobilized Sepharose and wheat germ lectin-Sepharose. The synthetic peptide GRGDSP inhibits GP IIb-IIIa binding to immobilized fibrinogen with an $IC_{50}$ of $1.5\;{\mu}M$. Venoms of three different snake species and a Korean scolopendra extract have strong antagonistic activities for the binding of human fibrinogen to the platelet GP IIb-IIIa complex. The $IC_{50}$ values of the snake venom s and scolopendra were in the range of $5.5\;{\mu}g$ to $60\;{\mu}g$. These results provide meaningful information for developing antiplatelet agents.

  • PDF