• Title/Summary/Keyword: Peptide-Binding

Search Result 406, Processing Time 0.034 seconds

Identification and characterization of laccase genes in the Flammulina velutipes var. lupinicola genome (Flammulina velutipes var. lupinicola의 유전체 정보기반 laccase 유전자 동정 및 특성 규명)

  • Yu, Hye-Won;Park, Young-Jin
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.285-293
    • /
    • 2021
  • The purpose of this study was to identify and characterize the laccase genes of Flammulina velutipes var. lupinicola. Five laccase genes (g1934, g1937, g2415, g2539, g5858) were selected based on the copper binding site and signal peptide analysis results using the laccase gene selected from the F. velutipes var. lupinicola genome. The size of the laccase genes of F. velutipes var. lupinicola were 1,488 bp~1,662 bp. As a result of cDNA sequence analysis, 14 to 17 introns were identified in the laccase genes. The cleavage site predicted as the signal peptide of the laccase gene was found to be located between 20 bp and 34 bp from the N-terminus. In addition, separation and purification were performed to characterize the F. velutipes var. lupinicola laccases, and the optimal activity of the separated and purified proteins were analyzed by pH, temperature and time. Five bands with laccase activity were found from zymogram analysis. The optimal pH of the reaction was 5.5, the optimal temperature was found to be 40℃. Therefore, characterization of the laccase genes identified in this study should help in better understanding the biomass decomposition of F. velutipes var. lupinicola.

Effects of Dietary Proteins on Serum Insulin-like Growth Factor-I (IGF-I) and IGF-Binding Protein-3 in Korean Rockfish, Sebastes schlegeli (사료의 단백질이 조피볼락 혈액중 Insulin-like growth factor-I (IGF-I) 및 IGF-binding protein-3에 미치는 영향)

  • NAM Teak-Jeong;KWON Mi-Jin;LEE Sang-Min;PARK Kie-Young;KIM Yoon;PARK Sung-Real;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.550-555
    • /
    • 2001
  • Insulin-like growth factor-I (IGF-I) is a mitogenic peptide with a molecular mass of 7 kDa. It is produced mainly in the liver and has important functions in the regulation of development and somatic growth. Moreover, Serum IGF-I concentration is regulated by the quantity and the nutritional quality of dietary protein. To determine the IGF-I level in Korean rockfish, Sabastes schlegeli, were fed four experiment diets that contained different protein quantities, namely $30\%,\;40\%,\;50\%\;and\;60\%$ for 70 days. Weight gain of the fish increased depending dietary protein quantity, Also, IGF-I concentrations increased according to dietary protein quantity, Feeding experiments were conducted to examine the effects of dietary protein sources on the serum IGF-I level in Korean rockfish, Fish meal (CO), soybean meal (SM), corn-gluten meal (CGM), meat meal (MM) and feather meal (FM) were used as variable protein sources of the formulated diet. IGF-I concentrations of the CO and MM groups ($277.7\pm23.2,\;291.5\pm41.2\;ng/mL$) were higher than those of the CGM and FM groups ($208.9\pm21.3,\;217.2\pm38.2\;ng/mL$). And IGFBP-3 levels by western blot analysis increased in good protein diets such as in the CO and MM groups. In conclusion, IGF-I may be a sensitive indicator the protein metabolism in fish as well as mammalian.

  • PDF

Production and Evaluation of Anti-Gastrin Serum for Radioimmunoassay (방사면역측정을 위한 항 Gastrin 혈청의 생산 및 평가)

  • Park, Hyoung-Jin;Kwon, Hyeok-Yil;Lee, Yun-Lyul;Shin, Won-Im;Suh, Sang-Won;Oh, Yang-Suk
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.89-98
    • /
    • 1989
  • In order to produce antibody for use in radioimmunoassay of gastrin in physiological concentration, four rabbits of New Zealand white were immunized with synthetic human gastrin-17-I conjugated to hemocyanin with EDC. Among them, only one rabbit produced antibody that could bind 50% of $^{125}I-gastrin$ at a final dilution of 1:25,000. $^{125}I-gastrin$ was prepared with synthetic human gastrin-17-I and $NaI^{125}$ by lactoperoxidase technique. The product was then purified on a column of Sephadex Gl5/G5O (7:3, w/w) followed by a column of DEAE sephadex A-25. The specific radioactivity of the purified $^{125}I-gastrin$ was in the range of 347-1429 ${\mu}Ci/nmole$ when determined by the self-displacement method. The effective affinity constant $(K_{eff})$, total binding sites (N), heterogeneity index $({\alpha})$ and average affinity constant $(K_{0})$ of the anti-gastrin serum calculated from Scatchard plot as well as Sips plot were $1.77{\times}10^{11}/M$, 255 nM, 0.84 and $0.79{\times}10^{11}/M$, respectively. When radioimmunoassay was performed with the anti-gastrin serum, it was confirmed that the mean concentration of gastrin immunoreactivity in plasma was increased by feeding in humans and rats, and also increased by bombesin administration in rats. The results indicate that the anti-gastrin serum produced in the present investigation is suitable for radioimmunological determination of gastrin in physiological concentration.

  • PDF

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu;Huang, Xiaoluo;Liu, Pengfu;Lin, Ling;Wu, Gaobing;Li, Chanjuan;Feng, Chunfang;Hong, Yuzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.518-524
    • /
    • 2010
  • A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea (Proteomics를 이용한 고랭지 배추의 고온장해 해석)

  • Shin, Pyung-Gyun;Hong, Sung-Chang;Chang, An-Cheol;Kim, Sang-Hyo;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1649-1653
    • /
    • 2007
  • High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

Key Structural Features of PigCD45RO as an Essential Regulator of T-cell Antigen Receptor Signaling (T-세포 항원 수용체 매개 신호전달 조절자로서 돼지 CD45RO 구조특성)

  • Chai, Han-Ha;Lim, Dajeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.211-226
    • /
    • 2019
  • Pig CD45, the leukocyte common antigen, is encoded by the PTPRC gene and CD45 is a T cell-type specific tyrosine phosphatase with alternative splicing of its exons. The CD45 is a coordinated regulator of T cell antigen receptor (TCR) signal transduction achieved by dephosphorylating the phosphotyrosine of its substances, including $CD3{\zeta}$ chain of TCR, Lck, Fyn, and Zap-70 kinase. A dysregulation of CD45 is associated with a multitude of immune disease and has been a target for immuno-drug discovery. To characterize its key structural features with the effects of regulating TCR signaling, this study predicted the unknown structure of pig CD45RO (the smallest isoform) and the complex structure bound to the ITAM (REEpYDV) of $CD3{\zeta}$ chain via homology modeling and docking the peptide, based on the known human CD45 structures. These features were integrated into the structural plasticity of extracellular domains and functional KNRY and PTP signature motifs (the role of a narrow entrance into ITAM binding site) of the tyrosine phosphatase domains in a cytoplasmic region from pig CD45RO. This contributes to the selective recognition of phosphotyrosine from its substrates by adjusting the structural stability and binding affinity of the complex. The characterized features of pigCD45RO can be applied in virtual screening of the T-cell specific immunomodulator.

Functional Analysis of a Gene Encoding Endoglucanase that Belongs to Glycosyl Hydrolase Family 12 from the Brown-Rot Basidiomycete Fomitopsis palustris

  • Song, Byeong-Cheol;Kim, Ki-Yeon;Yoon, Jeong-Jun;Sim, Se-Hoon;Lee, Kang-Seok;Kim, Yeong-Suk;Kim, Young-Kyoon;Cha, Chang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.404-409
    • /
    • 2008
  • The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and ${\beta}$-glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.

Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae

  • Ahn, Hee Jun;Hong, Eun Young;Jin, Dong Hoon;Hong, Nam Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1365-1374
    • /
    • 2014
  • Thirteen analogs of tridecapeptide ${\alpha}$-factor (WHWLQLKPGQPMY) of Saccharomyces cerevisiae with C- or N-terminal Trp extension and isosteric replacement by Aib at position 8 and 11, Trp at position 13, D-Ala at position 9, and Orn and Glu at position 6 were synthesized and assayed for their biological activity. Receptor binding assay was carried out using our newly developed spectrophotometric method with detector peptide 14. C- or N-terminal extended analogs, ${\alpha}$-factor-$[Trp]_n$ (n =1-5) 1-5 and $[N-Trp]_1$-${\alpha}$-factor 6, were all less active than native ${\alpha}$-factor and gradual decreases in both activity and receptor affinity were observed with greater Trp extension. Trp-substituted analog at position 13, $[Trp^{13}]{\alpha}$-factor 7, exhibited about 2-fold reductions in both activity and receptor affinity. Aib-substituted analogs, $[Aib^8]{\alpha}$-factor 8 and $[Aib^{11}]{\alpha}$-factor 9, showed 5- to 10-fold reduction in activity as well as 3-fold reduction in receptor affinity compared to native ${\alpha}$-factor. $[Orn^6]{\alpha}$-factor 10 demonstrated strong potency with a 7.0-fold increase in halo activity as well as 1.8-fold increase in receptor affinity compared to native ${\alpha}$-factor. For two double substituted analogs, [$Glu^6,{\small{D}}-Ala^9$]${\alpha}$-factor 12 showed the slightly decreased potency in halo activity compared to analog 10, whereas [$Orn^6,{\small{D}}-Ala^9$]${\alpha}$-factor 11 exhibited 15-fold higher halo activity as well as nearly 3-fold higher receptor affinity compared to native ${\alpha}$-factor.

NgR1 Expressed in P19 Embryonal Carcinoma Cells Differentiated by Retinoic Acid Can Activate STAT3

  • Lee, Su In;Yun, Jieun;Baek, Ji-Young;Jeong, Yun-Ji;Kim, Jin-Ah;Kang, Jong Soon;Park, Sun Hong;Kim, Sang Kyum;Park, Song-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.105-109
    • /
    • 2015
  • NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.