• Title/Summary/Keyword: Peptide-Binding

Search Result 410, Processing Time 0.028 seconds

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant (애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가)

  • Park, Phun-Bum;Ahn, Chul-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1563-1568
    • /
    • 2010
  • In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon;Jang, Young-Joo
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.709-716
    • /
    • 2006
  • Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Maladaptive Behavior and Gastrointestinal Disorders in Children with Autism Spectrum Disorder

  • Pusponegoro, Hardiono D.;Ismael, Sofyan;Sastroasmoro, Sudigdo;Firmansyah, Agus;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.4
    • /
    • pp.230-237
    • /
    • 2015
  • Purpose: Various gastrointestinal factors may contribute to maladaptive behavior in children with autism spectrum disorders (ASD). To determine the association between maladaptive behavior in children with ASD and gastrointestinal symptoms such as severity, intestinal microbiota, inflammation, enterocyte damage, permeability and absorption of opioid peptides. Methods: This observational cross-sectional study compared children with ASD to healthy controls, aged 2-10 years. Maladaptive behavior was classified using the Approach Withdrawal Problems Composite subtest of the Pervasive Developmental Disorder Behavior Inventory. Dependent variables were gastrointestinal symptom severity index, fecal calprotectin, urinary D-lactate, urinary lactulose/mannitol excretion, urinary intestinal fatty acids binding protein (I-FABP) and urinary opioid peptide excretion. Results: We did not find a significant difference between children with ASD with severe or mild maladaptive behavior and control subjects for gastrointestinal symptoms, fecal calprotectin, urinary D-lactate, and lactulose/mannitol ratio. Urinary opioid peptide excretion was absent in all children. Children with ASD with severe maladaptive behavior showed significantly higher urinary I-FABP levels compared to those with mild maladaptive behavior (p=0.019) and controls (p=0.015). Conclusion: In our series, maladaptive behavior in ASD children was not associated with gastrointestinal symptoms, intestinal inflammation (no difference in calprotectin), microbiota (no difference in urinary D-lactate) and intestinal permeability (no difference in lactulose/manitol ratio). ASD children with severe maladaptive behavior have significantly more enterocyte damage (increased urinary I-FABP) than ASD children with mild maladaptive behavior and normal children.

Purification of Streptomyces Phospholipase D by Immunoaffinity Chromatoghraphy using Peptide Antibodies (Streptomyces phospholipase D의 정제를 위한 면역친화 크로마토그래피의 개발)

  • Park, In-Sun;Kim, Young-Ah;Jeong, Su-Jin;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.294-298
    • /
    • 2006
  • An immunoaffinity chromatography for the specific binding of Streptomyces somaliensis phospholipase D (PLD) that is considered as an industrially potential enzyme was developed. By using the protein structure prediction programs and the X-ray crystal structure of a Streptomyces PLD, 5 different epitopes with high antigenicity that are predicted to locate on the surface of the S. somaliensis PLD were selected and then synthesized for the preparation of antipeptide antibodies. Each purified rabbit IgG was coupled with NHS-activated Sepharose to prepare the immunoaffinity resins. After one-step purification of the culture concentrate on the antipeptide IgG-coupled Sepharose column, SDS-PAGE and the Western blot analysis of the purified samples showed that purification of PLD on the affinity columns was satisfactory, indicating that the peptide design using the structural information of Streptomyces PLDs was rational. However, the purified PLD in the solution aggregated rapidly, which resulted in poor specific activity and low purification yield.

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.

Cell Migration and Wound Healing Activities of Recombinant Thymosin β-4 Expressed in Escherichia coli (재조합 Thymosin β-4의 세포이동능과 상처치유능)

  • Hong, Kyo-Chang;Choi, Yung Hyun;Kim, Gun-Do;Cha, Hee-Jae;Jeon, Sung-Jong;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.135-141
    • /
    • 2022
  • Thymosin β-4 (TB4) is a small peptide composed of 43 amino acids. To obtain sufficient biologically active mouse TB4 economically, we cloned and overexpressed this gene in an Escherichia coli system. With the isopropyl β-D-1-thiogalactopyranoside induction of the E. coli transformant, TB4 fusion protein with intein- and chitin-binding domain was successfully expressed in the soluble fraction within the E. coli cell. The TB4-intein - chitin-binding domain fusion protein was purified from the soluble fraction of E. coli cell lysate. The affinity chromatography with chitin beads and dithiothreitol-mediated intein self-cleavage reaction releases the TB4 peptide into the stripping solution. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis and Western blot analyses were used to confirm that the recombinant TB4 peptide was produced with the expected size of 5 kDa. We found that the recombinant TB4 stimulated cell migration in the transwell plate chamber assay. After 18 hr of the treatment of the recombinant TB4 with 1 ng/ml concentration, the migration of the HT1080 cell was increased by 20% compared with that of the chemically synthesized TB4. The recombinant TB4 was also observed to promote the healing of a wound area in C57BL/6 mice by as high as 35% compared with that of the chemically synthesized TB4. These results suggest that the recombinant TB4 has better biological activity for cell migration and wound healing than that of the chemically synthesized TB4 peptide.

Phenylarsine Oxide and Adenosine-sensitive Trans-golgi Complex Targeting of GFP Fused to Modified Sulfatide-binding Peptide (Phenylarsine oxide와 adenosine에 민감한 sulfatide 결합 펩타이드의 trans-golgi network 타기팅)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • Many cytoplasmic proteins are targeted to the cytoplasmic membrane of the trans-Golgi network (TGN) via an N-terminal short helix. We previously showed that the 20 N-terminal amino acids of Aplysia phosphodiesterase 4 (ApPDE4) long form are sufficient for its targeting to the plasma membrane and the TGN. The N-terminus of the ApPDE4 long form binds to PI4P and sulfatide in vitro. Therefore, in order to decipher the roles of sulfatide in Golgi complex targeting, we examined the cellular localization of sulfatide-binding peptides. In this study, we found that enhanced green fluorescent protein (EGFP) fused to the C-terminus of modified sulfatide- and heparin-binding peptides (mHSBP-EGFP) was localized to the TGN. On the other hand, its mutant, in which tryptophan was replaced with an alanine, leading to the impairment of heparin and sulfatide binding, was localized to cytosol. We also found that the TGN targeting of mHSBP-EGFP is impaired by the treatment of antimycin A, phenylarsine oxide (PAO), and adenosine but not a high concentration of wortmannin. These results suggest that PAO and adenosine-sensitive kinases, including phosphatidylinositol 4-kinase II, may play key roles in the recruitment of mHSBP-EGFP.

Alteration of Insulin-like Growth Factor(IGF)-I and IGF-Binding Proteins in Renal Development and Regeneration (신장발육 및 재생에 따른 insulin-like growth factor(IGF)-I 및 IGF-binding protein의 변화)

  • Park Sung-Kwang;Koh Gou-Young;Lee Dae-Yeol
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.109-116
    • /
    • 1999
  • Purpose: Insulin-like growth factor(IGF)-I and -II are peptide growth factor whose activity is modulated by interaction with the family of six IGF-binding proteins(IGFBPs). IGF-I is detected in rat kidney and has metabolic and growth effects. This study was designed to examine temporal expression of IGFBPs in kidney during renal development and postischemic regeneration in rat. Method: The expression of IGFBPs in kidney during renal development from 15th day of gestation to adult life by using Northern blot analysis. We also examined the renal IGF-IGFBP axis in uremic rat by using Northern blot and immunohistochemistry. Results: The mRNA of IGFBP-1 and -3 were not or barely detected in fetal stages. However, the mRNA level of IGFBP-1 and -3 were increased gradually from day 7 after birth to adult. In contrast, the mRNA of IGFBP-2 and -5 were highly expressed in fetal stages and maintained almost same levels until day 7 (IGFBP-2) or day 30 (IGFBP-5) after birth, then their levels decreased markedly. The mRNA of IGFBP-4 were expressed moderately in fetal kidney and increased gradually after birth. Interestingly, the mRNA of IGFBP-1 and-4 were induced up to 3-5 fold during maximum regeneration period and were recovered to normal levels after acute ischemic injury. In contrast, the mRNA level of IGFBP-3 and-IGFBPrP-1 were decreased slightly at 1 day after ischemic injury, then recovered to normal level during maximum regeneration period. Conclusion: There were differential expressions of IGFBPs in kidney that can modulate IGF action on developing, differentiating, maintaining, and regenerating renal structure and function.

  • PDF

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.