• Title/Summary/Keyword: Penicillin G potassium

Search Result 5, Processing Time 0.018 seconds

The Stability of Penicillin G Potassium Injection after Reconstitution in Various Storage Conditions (Penicillin G Potassium 주사액 조제 후 보관방법에 따른 안정성)

  • Chang, Myung Soon;Shin, Hyun Taek;Su, Ok Kyung;Lee, Suk Hyang
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The stability of penicillin G potassium injection after reconstitution was evaluated in two different diluents of sodium chloride $0.9\%$ and dextrose $5\%$ in water stored at room temperature or refrigerated condition. The concentrations of penicillin G, stored for 24 hours at room temperature or for 10 days at refrigerated condition, were determined by HPLC. Also the pHs of the reconstituted solutions were monitored. The concentrations and pHs of penicillin G potassium 500,000 U/ml injection after reconstitution gradually decreased in all conditions. Stored at room temperature after reconstitution, a new peak which suspected as degradation products of penicillin G was detected in 5 hours in sodium chloride $0.9\%$, 4 hours in dextrose $5\%$ in water. At refrigerated condition, the new peak was detected in 4 days in both sodium chloride $0.9\%$ and dextrose $5\%$ in water. The degradation products of penicillin G allergy have been thought to be one of the substances responsible for evoking allergic reactions. In conclusion, the penicillin G potassium 500,000 U/ml injection after reconstitution was stable for 4 hours in sodium chloride $0.9\%$ 3 hours in dextrose $5\%$ in water solution at room temperature. At refrigerated condition, both solutions were stable for 3 days after reconstitution.

  • PDF

Characteristics of Enzyme Sensors using Carboxylated PVC for Immobilizing Penicillinase (Carboxylated PVC에 페니실리나제를 고정한 효소 센서의 특성)

  • Kim, Ki-Myo;Kim, Young-Hak;Lee, Eun-Yup;Hur, Moon-Hye;Ahn, Moon-Kyu
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.72-77
    • /
    • 1996
  • Penicillin sensor was manufactured by immobillizing penicillinase with glutaraldehyde on the $H^+$-selective membrane based on PVC-COOH-TDDA. This membrane was not inter fered by $K^+$ ion in Pc-G potassium salt. When enzyme was immobilized with glutaraldehyde, the PVC-COOH matrix was more effective than PVC matrix. Calibration curve calculated from Nernst equation was not linear. But potential was relative to concentration of Pc-G. And maximal potentiometric velocity was also relative to concentration of Pc-G. Therefore, it may be applied to Michaelis-Menten equation. The penicillin sensor was useful for determination of Pc-G at concentration of 0.1~10mM level.

  • PDF

Design and Synthesis of New 4-Alkylthio Monocyclic β-Lactams

  • Lee, Sang Hyup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • New types of monocyclic ${\beta}$-lactams constitute an important class of compounds due to their unique structures and natures. Here, the design and synthesis of new 4-alkylthio monocyclic ${\beta}$-lactams 2a and 3a are reported. Significantly, compounds 2a and 3a, while keeping a monocyclic system, were designed to contain all of the substructures provided by the cleavage of C(2)-C(3) bond in penicillins. Efficient synthetic pathways for compounds 2a and 3a were established based on two different strategies. Compound 2a was synthesized from raw materials, using 4-acetoxyazetidin-2-one as a key intermediate, through a ten-step synthetic sequence in 3% overall yield. Compound 3a was synthesized from potassium salt of penicillin G (17), using the degraded product 20 as a key intermediate, through a six-step synthetic sequence in 11% overall yield. 4-Alkylthioazetidin-2-one derivatives, introduced in this study, could serve as valuable intermediates for the development of new monocyclic ${\beta}$-lactams.

Electrochemical Behavior and Differential Pulse Polarographic Determination of Piperacillin Sodium

  • Hahn, Young-hee;Son, Ean-ji
    • Archives of Pharmacal Research
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2000
  • In an aqueous piperacillin sodium solution, a well-defined single wave or single peak was observed by direct current(DC) polarography or differential pulse polarography(DPP). The peak potential change per pH unit was -54 mV in the phosphate buffer at $18^{\circ}C$, which indicated that protons were involved in the electrochemical reduction of the 2,3-dioxopiperazine moiety of piperacillin sodium with a $H^{+}e^{-}$ ratio of one. Using a phosphate buffer of pH 4.3, the $1.0{times}10^{-7}$ M piperacillin sodium single peak could be determined by DPP with relative standard deviation of 1.6 %(n=3). Piperacillin sodium could be analyzed with-out interference from penicillin G-potassium, which enabled the employment of DPP as a fast and simple technique for monitoring the synthetic process of the antibiotic.

  • PDF