• Title/Summary/Keyword: Peng-Robinson Equation of State

Search Result 70, Processing Time 0.023 seconds

Phase Equilibrium of Binary Mixture for the (propylene oxide + 1-pentanol) System at Several Temperatures

  • Kim, Jeong-lae;Kim, Hakmin;Park, Su In;An, Gyu Min;Kim, Min Gi;Shin, Moon Sam
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.73-77
    • /
    • 2019
  • Isothermal (vapor + liquid) equilibrium data measurements were undertaken for the binary mixtures of (propylene oxide + 1-pentanol) system at three different temperatures (303.15, 318.15, and 333.15) K. The Peng-Robinson-Stryjek-Vera equation of state (PRSV EOS) was used to correlate the experimental data. The van der Waals one-fluid mixing rule was used for the vapor phase and the Wong-Sandler mixing rule, which incorporates the non-random two liquid (NRTL) model, the universal quasi-chemical (UNIQUAC) model and the Wilson model, was used for the liquid phase. The experimental data were in good agreement with the correlation results.

심냉 공기분리공정의 공기압축공정에서 전력비 절감을 위한 액화천연가스 냉열 활용에 대한 연구 (A Study on the Utilization of the LNG Cold Heat for the Reduction of the Power Consumption in Main Air Compressors in Cryogenic Air Separation)

  • 조두희;조정호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.322-327
    • /
    • 2020
  • In this work, a study for the reduction of the electric power consumption has been estimated in main air compressors in the air separation unit through cryogenic distillation columns with PRO/II with PROVISION V10.2 at AVEVA company. Both required LNG mass flow rate and cold heat contained in 1 ton of LNG were also predicted using Peng-Robinson equation of state with Twu's new alpha function. Through this work, we concluded that 32.33-48.69% of electric power could be saved by using LNG cold heat.

혼합냉매를 사용한 열펌프의 성능해석 (II) (Performance Analysis of a Heat Pump Using Refrigerant Mixtures (II))

  • 김민수;김동섭;원성필;노승탁
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.218-225
    • /
    • 1990
  • Studies on the performance of a heat pump using non-azeotropic refrigerant mixtures are done. In order to estimate the thermodynamic properties for the selected non-azeotropic refrigerant mixtures including R22/R152a, R22/R142b, R22/R114 and R13B1/R152a, Peng-Robinson equation of state is adopted. The pressure-enthalpy diagram and the temperature-entropy diagram are plotted for each refrigerant mixture. Considerations on the capacity modulation for the heat pump system using refrigerant mixtures are taken into. Results show that when the heating load varies, the possibility for the capacity modulation is found in the heat pump system using a compressor with constant volume flow rate. Under a constant heating capacity condition in the heat pump system, the coefficient of performance increases when the refrigerant mixtures are used. The volume flow rate decreases as the mass fraction of lower boiler increases in this case.

  • PDF

Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

  • Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.206-212
    • /
    • 2016
  • Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng-Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

Bubble-Point Measurement of Binary Mixture for the CO2 + Caprolactone Acrylate System in High Pressure

  • Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.826-831
    • /
    • 2019
  • Experimental data of phase equilibrium is reported for caprolactone acrylate in supercritical carbon dioxide. Bubble-point data was measured by synthetic method at temperatures ranging from (313.2 to 393.2) K and pressures up to 55.93 MPa. In this research, the solubility of carbon dioxide for the (carbon dioxide + caprolactone acrylate) system decreases as temperature increases at a constant pressure. The (carbon dioxide + caprolactone acrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + caprolactone acrylate) system was correlated with Peng-Robinson equation of state using mixing rule. The critical property of caprolactone acrylate was predicted with the Joback and Lyderson method.

Linde, Claude 및 Advanced 사이클을 이용한 질소액화공정 연구 (A Study on the Nitrogen Liquefaction Using Linde, Claude and Advanced Cycle)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제33권3호
    • /
    • pp.261-265
    • /
    • 2022
  • In this paper, comparative studies between Linde, Claude and advanced cycle for the liquefaction of nitrogen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of nitrogen. When using Claude liquefaction, we can reduce the total compression power by 49.25% for the comparison of Linde cycle. And finally, we could conclude that 90.41% of total compression power was saved when using an advanced cycle being compared to Linde liquefaction cycle.

메탄, 에틸렌, 에탄 및 프로판으로 구성된 새로운 작동 유체와 액화 천연가스의 냉열을 활용한 발전 공정의 효율 향상에 대한 연구 (A Study on the Efficiency Improvement of the Power Generation Process Using New Working Fluids Composed of Methane, Ethylene, Ethane, and Propane and the Cold Heat Contained in the Liquefied Natural Gas)

  • 조정호
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.318-323
    • /
    • 2024
  • In this paper, computer modeling works have been performed for the power generation Rankine cycle using new working fluids and liquefied natural gas (LNG) cold heat. PRO/II with PROVISION released January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle. Optimal working fluid composition was determined to maximize LNG cold heat to increase power generation efficiency and net power production.

액화천연가스 냉열을 활용한 암모니아 냉동 사이클의 추산 (Estimation of the Ammonia Refrigeration Cycle Using LNG Cold Heat)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.357-362
    • /
    • 2018
  • In this study, computer simulation and optimization works have been performed for a refrigeration cycle using ammonia as a refrigerant and also how much power was saved when the liquefied natural gas cold heat is replaced for the refrigeration cycle. PRO/II with PROVISION release 10.0 from Schneider electric company was used, and Peng-Robinson equation of the state model was selected for the modeling of the refrigeration cycle and LNG cold heat utilization process.

액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구 (Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.188-192
    • /
    • 2019
  • Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

초임계 이산화탄소를 활용한 발전에 대한 연구 (A Study on the Power Generation Using Supercritical Carbon Dioxide)

  • 노상균
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.297-302
    • /
    • 2019
  • In this paper, the power generation efficiency increase has been studied for a Rankine cycle using both supercritical carbon dioxide as a working fluid and LNG as a coolant with PRO/II with PROVISION release 10.0 from Aveva company. Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle using LNG cold heat. Power generation efficiency was increased from 24.82% to 57.76% when using LNG as a coolant for supercritical carbon dioxide power generation cycle.