• 제목/요약/키워드: Penetration Thickness

검색결과 303건 처리시간 0.022초

THE EFFECTS OF SEALING ON THE PLASMA-SPRAYED OXIDE-BASED COATINGS

  • Kim, Hyung-Jun;Sidoine Odoul;Kweon, Young-Gak
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.53-58
    • /
    • 2002
  • Electrical insulation and mechanical properties of the plasma sprayed oxide ceramic coatings were studied before and after the sealing treatment of the ceramic coatings. Plasma sprayed A1$_2$O$_3$-TiO$_2$ coating as the reference coating was sealed using three commercial sealants based on polymer. Penetration depth of the sealants to the ceramic coating was evaluated directly from the optical microscope using a fluorescent dye. It is estimated that the penetration depth of the sealants to the ceramic coating is from 0.2 to 0.5 mm depending on the sealants used. The preliminary test results with a DC puncture tester imply that the dielectric breakdown voltage mechanism of plasma sprayed ceramic coatings has been determined to be a corona mechanism. Dielectric breakdown voltage of the as-sprayed and as-ground samples have shown a linear trend with regard to the thickness showing an average dielectric strength of 20 kV/mm for the thickness scale studied. It is also shown that grinding the coating before sealing and adding fluorescent dye do not agent the penetration depth of sealants. All of the microhardness, two-body abrasive wear resistance, bond strength, and surface roughness of the ceramic coating after the sealing treatment are improved. The extent of improvement is different from the sealants used. However, three-point bending stress of the ceramic coating after the sealing treatment is decreased. This is attributed to the reduced micro-crack toughening effect since the cracks propagate easily through the lamellar of the coating without crack deflection and/or branching after the sealing treatment.

  • PDF

Evaluation of structural safety reduction due to water penetration into a major structural crack in a large concrete project

  • Zhang, Xiangyang;Bayat, Vahid;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Yong, Weixun;Zhou, Jian
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.319-329
    • /
    • 2020
  • Structural damage to an arch dam is often of major concern and must be evaluated for probable rehabilitation to ensure safe, regular, normal operation. This evaluation is crucial to prevent any catastrophic or failure consequences for the life time of the dam. If specific major damage such as a large crack occurs to the dam body, the assessments will be necessary to determine the current level of safety and predict the resistance of the structure to various future loading such as earthquakes, etc. This study investigates the behavior of an arch dam cracked due to water pressure. Safety factors (SFs), of shear and compressive tractions were calculated at the surfaces of the contraction joints and the cracks. The results indicated that for cracking with an extension depth of half the thickness of the dam body, for both cases of penetration and non-penetration of water load into the cracks, SFs only slightly reduces. However, in case of increasing the depth of crack extension into the entire thickness of the dam body, the friction angle of the cracked surface is crucial; however, if it reduces, the normal loading SFs of stresses and joints tractions reduce significantly.

고속비상체의 충돌에 의한 고강도 콘크리트의 표면관입저항성 및 배면박리성상에 관한 연구 (A Study on the Penetration Resistance and Spalling Properties of High Strength Concrete by Impact of High Velocity Projectile)

  • 김홍섭;남정수;황헌규;전중규;김규용
    • 콘크리트학회논문집
    • /
    • 제25권1호
    • /
    • pp.99-106
    • /
    • 2013
  • 고속 비상체에 의한 충격을 받는 콘크리트는 그 충격력에 의해 관통, 표면관입 및 배면박리뿐만 아니라 균열의 확산에 의해 나타나는 국부적인 파괴 등 정하중을 받을 때와 다른 파괴거동을 보인다. 이러한 콘크리트의 파괴거동은 비상체의 재료적 특성, 충돌속도, 질량 및 기하학적 구조뿐만 아니라 콘크리트의 재료적 특성, 시험체의 크기 및 두께, 보강재료 및 방법 등 다양한 요인에 의해 영향을 받는다. 이 연구에서는 콘크리트 재료의 압축강도에 따른 표면관입깊이 및 배면박리성상에 대하여 평가하고, 섬유보강에 의한 배면박리억제효과에 대하여 검토하고자 하였다. 그 결과 압축강도의 증가로 인하여 표면관입깊이는 감소하였으며, 이 연구 범위의 결과는 수정 NDRC식 및 US ACE식과 유사한 경향을 나타냈다. 반면, 배면박리억제에 있어 압축강도 증가에 의한 영향은 확인할 수 없었으며, 섬유보강에 의한 인성의 향상을 통하여 배면박리를 억제할 수 있었다.

고에너지 전자선 진자조사에 의한 선량분포 (The Dose Distribution of Arc therapy for High Energy Electron)

  • 추성실;김귀언;서창옥;박창윤
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

테트라싸이클린 처리된 흡수성 및 비흡수성 조직유도재생술용 막에의 세균부착과 침투양상 (Bacterial attachment and penetration to Tetracycline-treated resorbable and nonresorbable membranes for GTR)

  • 이호재;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.19-43
    • /
    • 1997
  • The barrier membranes for GTR procedure could be affected bY bacterial contamination after exposure to oral environment. This study was done to evaluate whether the tetracycline impregnated barrier membranes could inhibit bacterial attachment and penetration into membranes. The resorbable membrane(polylactic and polyglycolide copolymer, $Resolute^{(R)}$, W.L Gore and Associates, Inc..USA) and the non-resorbable membrane(e-PTFE; Gore-TexTM, W.L. Gore & Associates, Inc.,USA) were cut into 4mm discs and trated with 5% tridodecylmethylammonium chloride solution in ethanol and dried in air. The membranes were immersed in tetracycline(TC) solution (100mg/ml, pH 8.0) and dried. To the maxillary canine-premolar region in six periodontally healthy volunteers, removable acrylic devices were inserted, on which 8 cylindrical chambers were glued with TC impregnated and non-impregnated discs, the membrane discs were examined for bacterial attachment and penetration, and structural changes under SEM and LM. From the 1st day to the 7th day, membranes showed bacterial plaque formation composed of cocci and rods. Thereafter, filamentous bacteria appeared and the plaque thickness increased. The TC impregnated e-PTFE membranes showed less bacterial attachment and delayed in bacterial plaque maturation than non-treated membranes. As for bacterial penetration, the TC impregnated e-PTFE membranes showed superficial invasion and infrequent presence of bacteria in unexposed inner surface at the 4th week. while the non-treated e-PTFE membranes showed deep bacterial invasion at the 2nd week and frequent presence of internal bacteria at the 4th week. The resorbable membranes started to be resorbed at the 2nd week and were perforated at the 4th week, regardless of TC treatment. In conclusion, bacterial plaque formation and penetration was efficiently delayed in TC impregnated e-PTFE membranes, whereas resorbable membranes were similar in bacterial invasion due to membrane degradation and perforation, regardless of TC treatment.

  • PDF

Relationship between Secondary Electron Emissions and Film Thickness of Hydrogenated Amorphous Silicon

  • Yang, Sung-Chae;Chu, Byung-Yoon;Ko, Seok-Cheol;Han, Byoung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.185-189
    • /
    • 2004
  • The temporal variation of a secondary electron emission coefficient (${\gamma}$ coefficient) of hydrogenated amorphous silicon (a-Si:H) was investigated in a dc silane plasma. Estimated ${\gamma}$ coefficients have a value of 2.73 ${\times}$ 10$^{-2}$ on the pure aluminum electrode and 1.5 ${\times}$ 10$^{-3}$ after 2 hours deposition of -Si:H thin films on a cathode. It showed an abrupt decrease for about 30 minutes before saturation. The variation of the ${\gamma}$ coefficient was estimated as a function of the thin film thickness, and the film thickness was about 80 nm after 30 minutes deposition time. These results are compared with the results of a computer simulation for ion penetration into a cathode.

후판 Al 6061합금의 전자빔용접 특성 평가 (The Characteristic Evaluation of Electron Beam Welding for Al 6061 alloy with thick-thickness plate)

  • 정인철;심덕남;김용재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.68-70
    • /
    • 2006
  • For the aluminum material of the thick-thickness more than 100mm Penetration depth Electron beam welding is effectively applicable with a characteristic of high energy intensity. But Al 6061 alloy has high crack sensitivity due to minor alloys, which are silicon, magnesium, copper etc. With a sample block of 135mm thickness EBW test was performed in vertical position. As tensile strength has $210{\sim}220N/mm^2$ with weld area broken. Bend test shows low ductility with fracture of partly specimens. Chemical contents of alloys show no difference between weld and base metal. Defect in middle weld area figures out typical hot crack due to low melting materials. Micro structure of weld area has some difference compare to HAZ and base metal. As a result of EBW test for Al 6061 alloy, it shows that weld defect could be occurred even though establishing of optimum weld parameter condition.

  • PDF

탄두 충돌 시 기폭관 컵의 변형 해석 (Deformation of STS Cup for EFI Detonator in High Velocity Impact)

  • 김석봉;유요한
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.430-434
    • /
    • 2013
  • In this paper, we have investigated deformation of cup for EFI detonator in high velocity impact test. The experimental result shows that STS cup deformed 0.170 mm with the bulged shape. The numerical simulation result with static/dynamic material properties of SUS304 shows 0.166 mm of deformation. The main parameters to decrease the deformation of cup are stength, thickness and density of cup. The initial condition of SUS304 cup was strength of 215 MPa and thickness of 0.12 mm. As strength increases to 500 MPa, deformation of cup converges to 0 mm, and as thickness increases to 0.18 mm, deformation of cup converges to 0 mm. If the density of cup decreases from 8 to 2.7 g/cc, the deformation of cup decreases to 0.141 mm.

On the Gate Oxide Scaling of Sub-l00nm CMOS Transistors

  • Seungheon Song;Jihye Yi;Kim, Woosik;Kazuyuki Fujihara;Kang, Ho-Kyu;Moon, Joo-Tae;Lee, Moon-Yong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권2호
    • /
    • pp.103-110
    • /
    • 2001
  • Gate oxide scaling for sub-l00nm CMOS devices has been studied. Issues on the gate oxide scaling are reviewed, which are boron penetration, reliability, and direct tunneling leakage currents. Reliability of Sub-2.0nm oxides and the device performance degradation due to boron penetration are investigated. Especially, the effect of gate leakage currents on the transistor characteristics is studied. As a result, it is proposed that thinner oxides than previous expectations may be usable as scaling proceeds. Based on the gate oxide thickness optimization process we have established, high performance CMOS transistors of $L_{gate}=70nm$ and $T_{ox}=1.4nm$ were fabricated, which showed excellent current drives of $860\mu\textrm{A}/\mu\textrm{m}$ (NMOS) and $350\mu\textrm{A}/\mu\textrm{m}$ (PMOS) at $I_{off}=10\mu\textrm{A}/\mu\textrm{m}$ and $V_dd=1.2V$, and CV/I of 1.60ps (NMOS) and 3.32ps(PMOS).

  • PDF

해양 플로터 상부모듈 지지구조의 설계에 관한 연구 (A Study of the Design for the Topside Module Support Structure of an Offshore Floater)

  • 송명근;장범선;고대은
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.53-58
    • /
    • 2010
  • Offshore floater such as FPSO, drillship is composed of topside and hull side, and the interface structure is called topside module support. In this study, practical considerations were investigated for the design of topside module supports, from the concept design stage to the final stage of structural determination, in view of design efficiency and construction productivity. The effects of welding design factors of topside module support, such as welding throat thickness, sectional welding area, and welding man-hours, were compared and analyzed closely with respect to productivity. The current status and problems regarding the application of deep or full penetration welding are discussed, and a direct-calculation method is suggested as a possible solution to these problems.