• Title/Summary/Keyword: Penetration Reduction

Search Result 287, Processing Time 0.024 seconds

Leak-Before-Break Behavior and Crack Opening Displacement in Piping Under Bending Load (굽힘하중을 받는 배관의 파단전누설거동 및 균열개구변위)

  • Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.725-730
    • /
    • 2010
  • The leak-before-break behavior and the crack opening displacement were investigated of statically indeterminate piping system and statically determinate piping system after a crack penetration. The reduction in the ultimate strength caused by a crack was relatively small in the statically indeterminate piping system. The leak-before-break in the statically indeterminate piping system had a larger safety margin than that in the statically determinate piping system. The crack opening displacement after crack penetration in a pipe with a nonpenetrating crack was evaluated by using a plastic rotation angle.

Evaluation of Fiber and Blast Furnace Slag Concrete Chloride Penetration through Computer Simulation

  • Kim, Dong-Hun;Petia, Staneva;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • Durability of concrete is an important issue, and one of the most critical aspects affecting durability is chloride diffusivity. Factors such as water.cement ratio, degree of hydration, volume of the aggregates and their particle size distribution have a significant effect on chloride diffusivity in concrete. The use of polypropylene fibers(particularly very fine and well dispersed micro fibers) or mineral additives has been shown to cause a reduction in concrete's permeability. The main objective of this study is to evaluate the manner in which the inclusion of fiber(in terms of volume and size) and blast furnace slag(BFS) (in terms of volume replacement of cement) influence the chloride diffusivity in concrete by applying 3D computer modeling for the composite structure and performing a simulation of the chloride penetration. The modeled parameters, i.e. chloride diffusivity in concrete, are compared to the experimental data obtained in a parallel chloride migration test experiment with the same concrete mixtures. A good agreement of the same order is found between multi.scale microstructure model, and through this chloride diffusivity in concrete was predicted with results similar to those experimentally measured.

Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure (분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구)

  • Park, Jeonghyun;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

Probabilistic Estimation of LMR Fuel Cladding Performance Under Transient Conditions

  • Kwon, Hyoung-Mun;Lee, Dong-Uk;Lee, Byung-Oon;Kim, Young ll;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.144-153
    • /
    • 2003
  • The object of this paper is the probabilistic failure analysis on the cladding performance of WPF(Whole Pin Furnace) test fuel pins under transient conditions, and analysis of the KALIMER fuel pin using the preceding analysis. The cumulative damage estimation and Weibull probability estimation of WPF test are performed. The probabilistic method was adapted for these analyses to determine the effective thickness thinning due to eutectic penetration depth. In the results, it is difficult to assume that a brittle layer depth made by eutectic reaction is all of the thickness reduction due to cladding thinning. About 93% cladding thinning of the eutectic penetration depth is favorable as an effective thickness of cladding. And the unreliability of the KALIMER driver fuel pin under the same WPF test condition is lower than that of the WPF pin because of the higher plenum-fuel volume ratio and lower cladding inner radius vs. thickness ratio. KALIMER fuel pin developed from conceptual design has a more stable transient performance for a failure mechanism due to fission gas buildup than the WPF pin.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Characteristics of Shaped Charge Jets by the Shape of the Inhibitor Inserted into the Liner (성형작약탄 라이너 용입체 형상에 따른 제트특성 분석)

  • Joonhong Choi;Manhoi Koo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.588-595
    • /
    • 2024
  • The performance of a shaped charge bomb depends on the explosive performance, liner precision machining and manufacturing quality. The key performance is how uniformly the liner transforms into a jet. In order to reduce the performance of the shaped charge bomb from a protection point of view, this study investigated the characteristics of the jet formation and progression by inserting inhibitors of different shapes into the liner using flash X-ray experimental analysis techniques. The larger the volume filled inside the liner, the lower the rate of high-speed jet generation, which was well confirmed by experiments. Due to the effect of the inhibitor, it takes a considerable amount of time delay to form a jet after explosion compared to a normal shot, and quantity and mass of jet particles that can contribute to penetration are decreased, and the penetration power is also greatly reduced due to the scattering of segmented jets.

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

A Study on Penetration Performance of Bit Design Geometry (Bit 설계형상의 굴진성능에 관한 연구)

  • Kim, Kwang-Hee;Lee, Yun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4359-4364
    • /
    • 2012
  • In this study, we carried out finite element analysis for drill bit design on ground boring. We verified analysis between drill bit analysis results and experiment results of test machine. From the study, the results expect that time and cost reduction for experiment using finite element analysis for determination on drill bit geometry and material property.

An experimental study on surface performance improvement of concrete influencing on resistance to chloride (콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jae-Sung;Kang, Suk-Pyo;Hong, Sung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF