• 제목/요약/키워드: Penetration Damage Diameter

검색결과 10건 처리시간 0.028초

철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구 (A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit)

  • 허장욱;현영진
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.

A numerical study on the damage of projectile impact on concrete targets

  • Lu, Gang;Li, Xibing;Wang, Kejin
    • Computers and Concrete
    • /
    • 제9권1호
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.

원위치 관입실험기를 활용한 철도 노반 평가 (Railbed Evaluation by using In-situ Penetration Test)

  • 김주한;박정희;윤형구;고태훈;이종섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.261-267
    • /
    • 2011
  • The test fit has commonly used for the evaluation of the railbed condition, and indirect methods by using the compressional wave are also studied. the direct evaluation method by penetration test has not been studied. For the measurement of in-situ cone tip resistance of the railbed with minimizing the disturbance of the upper railbed. the cone penetrometer with the helical type outer rod(CPH) was developed. The outer rod, which has helical screw, is penetrated through the gravel layer and provides the reaction force for cone penetration testing. the cone tip resistances are measured by the mini cone penetrometer, where diameter is 15mm. For the developing the mini cone, strain gauge installation, circuit configuration, penetration rates and calibration process are considered. For the easy penetration of the screw rod in the field, the reaction force stepping plate and guide column are arranged. The screw rod are penetrated through the gravel layer. And the mini cone was pushed into the subgrade railbed at the penetration rate of 1mm/sec. The penetration test shows that the cone tip resistance increases along the depth. In addition, the subgrade condition is evaluated. This study demonstrates that the CPH may be effectively used for the evaluation of subgrade method any damage of the gravel layer.

  • PDF

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

A study on nanoparticle filtration characteristics of multilayer meltblown depth filters

  • Lee, Kang-San;Hasolli, Naim;Jeon, Seong-Min;Lee, Jae-Rang;Kim, Kwang-Deuk;Park, Young-Ok;Hwang, Jungho
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.51-56
    • /
    • 2016
  • Due to recent development in nanotechnology and increasing usage and production of nanomaterials, numerous studies related to environment, sanitation and safety handling of nanoparticle are being conducted. Since nanoparticles can be easily absorbed into human bodies through breathing process, based on their toxic substances and their large specific surface, these particles can cause serious health damage. Therefore, to reduce nanoparticle emissions, nanofiltration technology is becoming a serious issue. Filtration is a separation process during which a fluid passes through a barrier by removing the particles from the stream. Barrier filters can be made of various materials and shapes. One of the most common type of barrier filter is the fibrous filter. Fibrous filters are divided in two types: nonwoven and woven fabrics. Polypropylene is a thermoplastic material, used as a base material for melt blown nonwoven fabric. In this study, we examined filtration property of KCl nanoparticles with a mean particle diameter of 75 nm using multilayer meltblown filter samples. These experiments verify that the penetration of nanoparticle in the filter correlate with pressure drop; the meltblown layer MB1 has the greatest effect on dust collection efficiency of the filter. Among all tested samples, dust collection efficiency of 2-layer filter was best. However, when considering the overall pressure drop and dust collection efficiency, the 4-layer filter has the highest quality factor for particles smaller than 70 nm.

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

Steel단섬유보강 시멘트복합체의 내충격성능 (Impact Resistant Performance of Steel Short Fiber-reinforced Cement Based Composites)

  • 남정수;김홍섭;최경철;이상규;손민재;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.254-255
    • /
    • 2017
  • The aim of this study is to investigate the impact resistant performance of steel short fiber-reinforced cement based composites (SFRCCs) containing 1.0, 1.5, 2.0 and 3.0% volume fraction of steel short fibers subjected to high velocity impact of steel projectile (the diameter of 19.05mm and the mass of 28.13g). The gunpowder impact facility was used for impact tests, and the impact velocity was from about 350 to 700m/s. The specimens were damaged in various failure modes, which are penetration, scabbing, and perforation. Comparing with Plain specimen, SFRCCs have superior capacity on the scabbing limit, and slightly bulged in the back side under the impact velocity of 700m/s. In addition, the impact resistant performance of SFRCCs improved with increase of steel short fiber volume ratio. The fibers play an important role in controlling the local damage of SFRCCs.

  • PDF

용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석 (Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area)

  • 윤민수;송기오;이재민;하승우;조선영
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

천공저항시험에 의한 콘크리트 터널라이닝의 역학적 특성 추정 (Estimation of the Mechanical Properties of the Concrete Tunnel Lining by Drilling Resistance Test)

  • 최순욱;성연창;정호섭;장수호
    • 한국지반공학회논문집
    • /
    • 제23권11호
    • /
    • pp.87-98
    • /
    • 2007
  • 화재 후 터널 구조물의 신속한 복구를 위하여 화재손상 구간을 정확하고 빠르게 파악하는 것이 무엇보다도 중요하다고 할 수 있다. 본 연구에서는 화재로 인한 라이닝 콘크리트의 역학적 특성 변과를 라이닝의 두께방향으로 연속적으로 측정하기 위한 천공저항시험법을 제안하고, 천공시험으로부터 측정된 천공 변수들로부터 모르타르와 콘크리트의 역학적 특성을 추정하고자 하였다. 비교적 균질한 모르타르에 대하여 일련의 천공저항시험을 실시한 결과, 분당회전수가 1,300rpm, 관입속도가 1.40mm/sec, 그리고 비트직경이 10mm인 경우에 측정된 천공 반력값의 편차가 가장 작게 나타나 최적의 시험조건으로 판별할 수 있었다. 최적 시험조건에서 모르타르에 대해 천공저항시험을 실시한 결과, 천공반력과 모르타트의 압축강도 및 탄성계수 사이의 결정계수가 각각 0.91 및 0.93으로 나타나 양호한 상관관계를 도출할 수 있었다. 또한 콘크리트에 존재하는 골재의 영향을 고려하기 위하여 반력 에너지 개념을 제시하였고 실제 압축강도와의 결정계수는 0.94로서 역시 양호한 상관관계를 도출할 수 있었다. 이상과 같이 천공 비트의 관입과 동시에 연속적으로 재료의 역학적 특성을 추정할 수 있는 천공저항시험의 적용 가능성을 파악할 수 있었다.