• 제목/요약/키워드: Pendulum Test

검색결과 126건 처리시간 0.026초

뇌졸중 후 강직 평가를 위한 진자검사 측정값의 상관관계 (Relationship Between Pendulum Test Measurements of Post-Stroke Spasticity)

  • 김용욱
    • 한국콘텐츠학회논문지
    • /
    • 제10권5호
    • /
    • pp.325-332
    • /
    • 2010
  • 본 연구의 목적은 뇌졸중 후 발생하는 강직을 평가하는데 사용되는 진자검사에서 세 가지 정량적 측정값 사이의 상관관계를 알아보는 것이다. 세 가지 측정값은 이완 지수, 진동 횟수, 그리고 진동 시간이다. 뇌졸중 환자 26명이 본 연구에 참여하였고, 측정값들 사이의 상관관계를 검증하기 위하여 피어슨 상관계수를 사용하였다. 본 연구의 결과 이완 지수와 진동 횟수 사이에서 통계적으로 유의한 양적 상관관계를 보였다(r=.881, p<.01). 또한 이완 지수와 진동 시간 사이에서도 유의한 양적 상관관계를 보였으며(r=.896, p<.01), 진동 횟수와 진동 시간 사이에서도 유의한 양적 상관관계를 보였다(r=.938, p<.01). 진자검사를 통한 강직의 정량적 측정치인 진동 횟수와 진동 시간은 복잡한 계산 과정을 통해 구해지는 이완 지수보다 비교적 쉽고 간단히 구할 수 있다. 따라서 간단하면서도 객관적인 측정값으로서 진자검사의 진동 횟수와 진동 시간의 사용이 향후 임상에서 강직의 정량적인 측정방법으로 유용할 것으로 사료된다.

편마비 환자 경직의 반사적 및 역학적 성분의 분리를 통한 경직의 정량적 평가 (Quantitative Evaluation of Spasticity through Separation of Reflex and Mechanical Component Related to Spasticity in Hemiplegic Patients)

  • 김철승;엄광문;김지원;류제청;강성재;김요한;박병규
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.142-149
    • /
    • 2009
  • The aim of this study was to identify both the mechanical and reflex properties associated with spasticity in hemiplegic patients. Ten hemiplegic patients were included in this study. Multiple pendulum tests were executed for each subject, and knee joint angle and EMG of Rectus Femoris muscle were measured. The neuromusculoskeletal system model was developed from generally accepted mechanism and identified through minimization of the error in the model-predicted pendulum trajectories. The identification was successful in terms of small error in simulated kinematics and high sensitivity and precision of simulated torque against EMG activity. The reflex threshold showed significant difference between different clinical scores (p<0.01) and significant negative correlation (r=-0.93) with the EMG duration. It is expected that the suggested method may help in understanding mechanisms underlying spasticity.

선용접방법으로 제작된 $16{\times}16$ 최적화 H형 스프링 지지격자에 대한 진자식충격시험 (Pendulum Impact Tests for 16by16 Through Welded Spacer Grids with Optimized H type Springs)

  • 김재용;윤경호;송기남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1803-1806
    • /
    • 2007
  • The General roles of a spacer grid(SG) are providing a lateral and vertical support for fuel rods, promoting a mixing of coolant and keeping guide tubes straight so as not to impede a control rod insertion under any normal or accidental conditions. To evaluate the impact characteristics of a SG such as impact velocity, critical buckling strength and duration time, a few types of impact tests for SGs have been conducted. In a previous study, a new welding method, a through-welding method, was proposed to increase critical buckling strength of a SG without any design change or material change and was verified by impact tests with $7{\times}7$ partial SG specimens.In this paper, the effect of through-welding method in case of a $16{\times}16$ full-size SG is investigated by pendulum impact tests with $16{\times}16$ SG specimens. And the increase of critical buckling strength for full-size SGs is measured by comparison with impact results of spot-welded and through-welded SGs.

  • PDF

관절계 역학적 특성의 정량적 평가방법 (A New Method for the Identification of Joint Mechanical Properties)

  • 엄광문;김석주;한태륜
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.209-218
    • /
    • 2004
  • The purpose of this paper is to suggest a practical and simple method for the identification of the joint mechanical properties and to apply it to human knee joints. The passive moment at a joint was modeled by three mechanical parts, that is, a gravity term, a linear damper term and a nonlinear spring term. Passive pendulum tests were performed in 5 fat and 5 thin men. The data of pendulum test were used to identify the mechanical properties of joints through sequential quadratic programming (SQP) with random initial values. The identification was successful where the normalized root-mean-squared (RMS) errors between the simulated and experimental joint angle trajectories were less than 10%. The parameter values of mechanical properties obtained in this study agreed with literature. The inertia, gravity and the damping constant were greater at fat men, which indicates more resistance to body movement and more energy consumption fer fat men. The suggested method is noninvasive and requires simple setup and short measurement time. It is expected to be useful in the evaluation of joint pathologies.

경직의 정량 평가를 위한 진자실험의 변수분석 (A Study on the Parameter Analysis for the Quantitative Evaluation of Spasticity Implementing Pendulum Test)

  • 임현균;이영신;조강희;채진목;김봉옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2000
  • Velocity-dependent increase in tonic stretch reflexes is one of the prominent characteristics of spasticity. It is very important to evaluate spasticity objectively and quantitatively before and after treatment for physicians. An accurate quantitative biomechanical evaluation for the spasticity which is caused by the disorder of central nervous system is made in this study. A sudden leg dropper which is designed to generate objective testing environment at every trial gives very effective environment for the test. Kinematic data are archived by the 3-dimensional motion analysis system($Elite^{(R)}$, B.T.S., Italy). Kinematic data are angle and angular velocity of lower limb joints, and length and lengthening velocity of lower limb muscle. A program is also developed to analyze the kinematic data of lower limb, contraction and relaxation length of muscles, and dynamic EMG data at the same tim. To evaluate spasticity quantitatively, total 31 parameters extracted from goniogram, EMG and muscle model are analyzed. Statistical analysis are made for bilateral correlations for all parameters. The described instrumentation and parameters to make quantitative and objective evaluation of spasticity shows good results.

  • PDF

USB 카메라를 이용한 실시간 구면진자 운동추적 감지시스템 (Real-Time Motion Tracking Detection System for a Spherical Pendulum Using a USB Camera)

  • 문병윤;홍성락;하만돈;강철구
    • 대한기계학회논문집A
    • /
    • 제40권9호
    • /
    • pp.807-813
    • /
    • 2016
  • 최근 다차원 운동의 잔류진동억제 제어를 위한 테스트베드로서 로봇 머니퓰레이터의 말단장치에 부착된 구면진자를 자주 활용하고 있다. 하지만 봅의 운동을 온라인에서 실시간으로 추적할 수 있는 자동감지장치가 없어, 봅의 궤적을 디지털데이터로 저장하고 플로팅하는데 불편함이 있었다. 본 논문에서는 디지털 USB 카메라를 이용하여 봅의 운동을 이차원 평면상에서 실시간으로 감지할 수 있는 시스템을 개발하였다. 본 시스템의 개발 목표를 빠른 이미지프로세싱 및 인터페이싱을 위한 하드웨어 구성과 효과적인 C 프로그래밍에 두었다. 개발된 시스템을, 2 자유도 스카라로봇의 말단장치에, 구면진자를 설치한 이차원 구면진자의 잔류진동억제 제어에 적용하여, 그 효용성을 입증하였다.

타격조건에 따른 수박의 음파특성 (Acoustic Characteristics of Watermelon According to Impact Conditions)

  • 최동수;최규홍;이영희;이강진;김만수
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.67-76
    • /
    • 2002
  • This study was conducted to investigate the effects of impact conditions on the acoustic characteristics of a watermelon. The study was crucial to develop a device for nondestructive internal quality evaluation of a watermelon by an acoustic impulse response method. An impact device was constructed with a pendulum to hit the watermelon, a microphone to detect the acoustic impulse responses, and a digital oscilloscope and computer to store and analyze the data. The selected samples were Guemcheon cultivar watermelons(Citrulus Vulgaris Schrad) harvested on Oct. 20,1998. Sixty watermelons were tested on flour different types of sample holders, with four kinds of ball made of different materials, at four bevels of the angular position of the pendulum and distance from the watermelon to the microphone. Since the magnitudes of frequencies obtained by hitting with the steel and rubber ball were relatively small at the bandwidths of above 500 Hz, it was shown that the steel and rubber ball were not suitable far a hitting ball in the pendulum to get informations on internal quality of the watermelon. In case of using broth of the wood and acryl ball, almost the same and good acoustic responses were shown on the wide range of frequency bandwidth. Therefore, it seemed that the acryl ball was more suitable to the test than the wood ball in considering its mechanical properties. The acoustic characteristics of the watermelon were not shown a significant difference between the types of sample holder. The amplitudes of the acoustic signals and the magnitudes of frequencies from the whole samples increased with increase of the angular position of pendulum and with decrease of the distance from the watermelon to the microphone. However, the resonance resonance of the sample were almost the same regardless of the angular positions and the distances.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

원추형 마찰진자베어링의 내진성능평가 (Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System)

  • 전법규;장성진;박경록;김남식;정득영
    • 한국지진공학회논문집
    • /
    • 제15권2호
    • /
    • pp.23-33
    • /
    • 2011
  • 본 연구에서는 중요 통신장비의 지진발생시 파손 및 성능저하를 방지하기 위하여 구조물로 전달되는 가속도를 조절할 수 있는 CFPBS(Cone-type Friction Pendulum Bearing System:원추형 마찰진자베어링)를 개발하고 내진성능을 검증하였다. CFPBS는 기존의 FPS(Friction Pendulum System)와 다르게 원추형으로 제작되었으며 보다 큰 마찰력을 얻기 위하여 마찰면에 패턴을 음각하였다. CFPBS의 고유성능을 파악하기 위하여 4개의 CFPBS가 하나의 개체를 이루도록 제작된 지진격리장치를 이용하여 자유진동시험을 수행하였다. 운동방정식으로부터 유도된 CFPBS의 이론식과 Newmark-${\beta}$ Method를 이용하여 내진성능을 검증하기위한 MATLAB7.0 기반의 동적 수치해석프로그램을 제작하였으며 CFPBS의 제작 시 원하는 성능을 발휘할 수 있도록 간략화된 CFPBS의 설계식을 제안하였다. 수치해석을 통한 CFPBS의 내진성능평가를 위하여 건축구조설계기준(KBC-2005)의 최대지진규모에 해당하는 인공지진파를 생성하고 검증하였다. El Centro NS(1940)와 Kobe NS(1995), 인공지진파 등을 사용하여 CFPBS의 상부질량과 경사각을 매개변수로 하는 수치해석을 수행하였다. 수치해석의 결과를 토대로 CFPBS의 내진성능을 평가하였으며 수치해석의 결과와 설계식을 이용하여 동일한 조건에서 얻어진 결과를 비교분석하였다.