• 제목/요약/키워드: Pendulum Dynamic

검색결과 185건 처리시간 0.022초

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

이륜 도립진자 이동로봇을 위한 강인제어기 설계 (Robust Control Design for a Two-Wheeled Inverted Pendulum Mobile Robot)

  • 유동상
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.16-22
    • /
    • 2016
  • 세계적으로 수많은 로봇연구실에서 이륜 도립진자 이동로봇에 대한 연구가 진행되고 있다. 본 논문에서는 이런 이륜 도립진자 이동로봇이 평탄한 경사면에서 안정적으로 주행할 수 있도록 하는 강인 제어기를 개발하는 것으로 고려한다. 경사면에서 이륜 도립진자 이동로봇의 균형을 위해 3 자유도의 운동방정식에서 선회운동을 제한한 2 자유도 동력학식을 사용하며, 가변구조시스템 이론을 근간으로 하는 슬라이딩 모드 제어기를 제안하고 LQR 이론을 이용하여 슬라이딩 운동이 일어나는 슬라이딩 평면을 설계한다. 시뮬레이션을 위해 Mathworks사의 Simulink를 활용하여 이륜 도립진자 이동로봇의 2 자유도 모델을 실현하고, 슬라이딩 모드 제어기 또한 Simulink를 이용하여 구현한다. 시뮬레이션 결과를 통해 제안된 제어기가 경사면을 주행하는 이륜 도립진자 이동로봇을 효과적인 제어한다는 것을 보인다.

New vibration control device and analytical method for slender structures

  • Takabatake, Hideo;Ikarashi, Fumiya
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.11-39
    • /
    • 2013
  • Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically determinate structures, they often collapse during earthquakes. Although vibration control is the most logical method for improving the earthquake resistance of such structures, there are many practical problems with its implementation due to their very long natural vibration period. This paper proposes a new vibration control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the same structure without the device attached. This is highly effective in causing the transverse motions of the device and the structure to oppose each other and so reduce the overall transverse vibration during an earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then proposed.

자전거로봇의 균형제어 및 주행제어를 위한 LQR 제어기 설계 (LQR Controller Design for Balancing and Driving Control of a Bicycle Robot)

  • 강석원;박경일;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.551-556
    • /
    • 2014
  • This paper proposes a balancing control and driving control of a bicycle robot based on dynamic modeling of the bicycle robot, which has been derived using the Lagrange equations. For the balancing control of the bicycle robot, a reaction wheel pendulum method has been adopted in this research. By using the dynamics equations of the bicycle robot, an LQR controller has been designed for a balancing and driving control of a bicycle robot. The performance of the balance control is verified experimentally before the driving control, which shows a stable posture within one degree vibrations. To show the dynamic characteristics of the bicycle robot during driving, a trapezoidal velocity trajectory is selected as the references. Through simulations and real experiments, the effectiveness of the proposed algorithm has been demonstrated.

퍼지모델을 이용한 비선형시스템의 센서고장 검출식별 (A Fuzzy Model Based Sensor Fault Detection Scheme for Nonlinear Dynamic Systems)

  • 이기상
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.407-414
    • /
    • 2007
  • A sensor fault detection scheme(SFDS) for a class of nonlinear systems that can be represented by Takagi-Sugeno fuzzy model is proposed. Basically, the SFDS may be considered as a multiple observer scheme(MOS) in which the bank of state observers and the detection & isolation logic are included. However, the proposed scheme has two great differences from the conventional MOSs. First, the proposed scheme includes fuzzy fault detection observers(FFDO) that are constructed based on the T-S fuzzy model that provides very good approximation to nonlinear dynamic systems. Secondly, unlike the conventional MOS, the FFDOS are driven not parallelly but sequentially according to the predetermined sequence to avoid the massive computational burden, which is known to be the biggest obstacle to the practical application of the multiple observer based FDI schemes. During the operating time, each FFDO generates the residuals carrying the information of a specified fault, and the corresponding fault detection logic unit performs the logical operations to detect and isolate the fault of interest. The proposed scheme is applied to an inverted pendulum control system for sensor fault detection/isolation. Simulation study shows the practical feasibility of the proposed scheme.

경직의 정량 평가를 위한 진자실험의 변수분석 (A Study on the Parameter Analysis for the Quantitative Evaluation of Spasticity Implementing Pendulum Test)

  • 임현균;이영신;조강희;채진목;김봉옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2000
  • Velocity-dependent increase in tonic stretch reflexes is one of the prominent characteristics of spasticity. It is very important to evaluate spasticity objectively and quantitatively before and after treatment for physicians. An accurate quantitative biomechanical evaluation for the spasticity which is caused by the disorder of central nervous system is made in this study. A sudden leg dropper which is designed to generate objective testing environment at every trial gives very effective environment for the test. Kinematic data are archived by the 3-dimensional motion analysis system($Elite^{(R)}$, B.T.S., Italy). Kinematic data are angle and angular velocity of lower limb joints, and length and lengthening velocity of lower limb muscle. A program is also developed to analyze the kinematic data of lower limb, contraction and relaxation length of muscles, and dynamic EMG data at the same tim. To evaluate spasticity quantitatively, total 31 parameters extracted from goniogram, EMG and muscle model are analyzed. Statistical analysis are made for bilateral correlations for all parameters. The described instrumentation and parameters to make quantitative and objective evaluation of spasticity shows good results.

  • PDF

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Adaptive Intelligent Control of Inverted Pendulum Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2372-2377
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,{\dot{x}},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

  • PDF

신경회로망을 이용한 도립전자의 학습제어 (Learning Control of Inverted Pendulum Using Neural Networks)

  • 이재강;김일환
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.99-107
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and the environments as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to parition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum of the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계 (Design of Fuzzy PID Controller Using GAs and Estimation Algorithm)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF