• Title/Summary/Keyword: Pencil ion chamber

Search Result 2, Processing Time 0.02 seconds

Calculation of depth dose for irregularly shaped electron fields (부정형 전자선 조사면의 심부선량과 출력비의 계산)

  • Lee, Byoung-Koo;Lee, Sang-Rok;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 2002
  • The main cause factor for effective the output, especially in small & irregular shaped field of electron beam therapy, are collimation system, insert block diameter and energy. In the absorption deose of treatment fields, we should consider the lateral build-up ratio (LBR), which the ratio of dose at a point at depth for a given circular field to the dose at the same point for a 'broad-field', for the same incident fluence and profile. The LBR data for a small circular field are used to extract radial spread of the pencil beam, ${\sigma}$, as a function of depth and energy. It's based on elementary pencil beam. We consider availability of the factor, ${\sigma}$, in the small & irregular fields electron beam treatment.

  • PDF

Evaluation of Absorbed Dose and Skin Dose with MDCT Using Ionization Chamber and TLD (이온 전리함 및 TLD 법을 이용한 Multi-Detector Computed Tomography의 흡수선량 및 체표면 선량 평가)

  • Jeon, Kyung Soo;Oh, Young Kee;Baek, Jong Geun;Kim, Ok Bae;Kim, Jin Hee;Choi, Tae Jin;Jeong, Dong Hyeok;Kim, Jeong Kee
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Recently, the uses of Multi-Detector Computed Tomography (MDCT) for radiation treatment simulation and planning which is used for intensity modulated radiation therapy with high technique are increasing. Because of the increasing uses of MDCT, additional doses are also increasing. The objective of this study is to evaluate the absorbed dose of body and skin undergoing in MDCT scans. In this study, the exposed dose at the surface and the center of the cylindrical water phantom was measured using an pencil ionization chamber, 30 cc ionization chamber and TL Powder. The results of MDCT were 31.84 mGy, 33.58 mGy and 32.73 mGy respectively. The absorbed dose at the surface showed that the TL reading value was 33.92 mGy from MDCT. These results showed that the surface dose was about 3.5% from the MDCT exposure higher than a dose which is located at the center of the phantom. These results mean that the total exposed dose undergoing MDCT 4 times (diagnostic, radiation therapy planning, follow-up et al.), is about 14 cGy, and have to be considered significantly to reduce the exposed dose from CT scan.