• Title/Summary/Keyword: Pencil Hardness

Search Result 106, Processing Time 0.025 seconds

The Study on the Development of Environmental-friendly Surface Material Using Condensed Tannin (축합형 탄닌을 이용한 친환경 건축마감재 개발에 관한 연구)

  • Jo, Jae-Min;Park, Moon-Soo;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • Medium-density fiberboard (MDF) is widely used as an indoor building materials. However, formaldehyde resins, commonly used to bind MDF together, emit formaldehyde and other volatile organic compounds that cause health risk at sufficient concentration. In this study, condensed tannin having formaldehyde absorption ability was used to solve the problem of formaldehyde emission generated from surface material. The synthesis of melamine-formaldehyde resin and reaction of melamine-formaldehyde and condensed tannin were analyzed by FT-IR spectrum. Also surface properties, such as shear force, impact strength, tape adhesion, pencil hardness and gloss retention were measured. Free formaldehyde analysis was performed to analyze remaining unreacted formaldehyde. According to the results, the optimum shear force and impact strength could be obtained by 10 wt.% usage of condensed tannin. In cases of pencil hardness and gloss retention, the optimum properties could be obtained at 20 wt.% of condensed tannin. The amounts of formaldehyde emission of surface material containing 20 wt.% of condensed tannin was 59 ${\mu}g/m^2{\cdot}h$. The amounts of formaldehyde emission could be reduced 3 times by using 20 wt.% of condensed tannin.

Formulation and Application of UV-Cured Hard Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 하드 코팅액의 제조 및 응용에 관한 연구)

  • Park, Bo-Ram;Yoon, Hyun-Jung;Zhao, Hong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2396-2401
    • /
    • 2009
  • This study is on development of UV-cured hard coating compounds which have more improved abrasion resistance than existing UV-cured urethane-acrylic resin, to prevent a surface of a widely used PVC tile as a constructive material from being scratched. To make a high abrasion resistant hard coating solution compared to UV-cured urethane-acrylic resin which has no abrasion resistance and been used for PVC tiles, we added powder substances of different abrasion resistant level, $Al_2O_3$(Al-160SG-3), $Al(OH)_3$(SH-8W), $SiO_2$(KS-5000), etc., to the resin, changing their contents from 10% to 30% against quantities of resin, and compounded it using Ring-Mill. After coating PVC tiles with the hard coating solution using bar-coating method that can adjust a thickness, we estimated some surface properties-abrasion resistance, pencil hardness, adhesive power, thickness of coating, and so on. As a result, a hard coating solution added 30% $Al_2O_3$ powder to the resin had the finest surface properties-the first grade in abrasion resistance, H in pencil hardness, 100% in adhesive power, and a hard coating solution which showed excellent solidity and abrasion resistance has smaller particle size, higher powder content, and thicker coating thickness.

Synthesis and Properties of Photo-curable Biomass-based Urethane Acrylate Oligomers (광경화형 바이오매스계 우레탄 아크릴레이트 올리고머의 합성 및 물성 연구)

  • Se-Jin Kim;Lan-Ji Baek;Byungjin Koo;Jungin Choi;JungMi Cheon;Jae-Hwan Chun
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2023
  • Generally, solvent-type coatings generate a large amount of volatile organic chemicals(VOC), which are carcinogenic substances, in the manufacturing process, and their use is regulated due to environmental problems. There is also the problem of resource depletion due to limited fossil fuels. Therefore, in this study, UV-curable urethane acrylate oligomers were synthesized with different contents of isosorbide, which is a biomass material, and proceeded to evaluate the physical properties of coatings. As the isosorbide contents increased, the viscosity, glass transition temperature, tensile strength, stain resistance, and pencil hardness increased, but elongation and flexibility decreased, and BOI-3 showed the best adhesion. The isosorbide content of the oligomer fixed at 20%, UV-curable urethane acrylate oligomer was synthesized according to the content ratio of polycaprolactone diol(PCL) and Ecoprol H1000(Ecoprol). As the PCL/Ecoprol content ratio increased, the glass transition temperature, elongation, and flexibility increased, but the tensile strength and pencil hardness decreased. It was confirmed that the adhesion and stain resistance increased by improving the surface bonding strength of PCL. All films of oligomers synthesized were transparent without discoloration.

Characteristic Analysis of Functional Nano-coating Films Synthesized according to the Annealing Ambient and Fabrication of Anti-pollution PV Module (기능성 나노코팅 박막의 열처리 분위기에 따른 특성분석 및 오염방지 태양광 모듈제작)

  • Kang, Hyunil;Shin, Seung Kwon;Kim, Hyungchul;Lim, Yonnsik;Yoo, Youngsik;Joung, Yeun-Ho;Kim, Junghyun;Choi, Won Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • We investigated that effects of annealing ambient on the characteristics of functional nano thin film synthesized on glass substrate. The functional nano thin films were annealed by using rapid thermal annealing (RTA) equipment in vacuum, oxygen and nitrogen ambient, respectively. The hardness of the functional nano thin films were measured by a standard hardness testing method (ASTM D3363) such as a H-9H, F, HB and B-6B pencil (Mitsubishi, Japan). Also, the adhesion of the functional nano thin films were measured by a standard adhesion testing method (ASTM D3359) using scotch tape (3M, Korea). The contact angle of the functional nano thin films was measured by a contact angle analyzer (Phoenix 300 Touch, S.E.O.). The optical property of functional nano thin films was measured via UV-visible spectroscopy (S-3100, Scinco).

ZrO2/TiO2/Organosilane Hybrid Composites via Low Temperature Sol-Gel Process for Hard and Transparent Coating (저온 졸-겔 법을 이용한 투명 하드코팅 필름용 ZrO2/TiO2/Organosilane 복합체 연구)

  • Lee, Su-Hyeon;Choi, Jongwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2018
  • In this study, we prepared hybrid composites by using low temperature sol-gel process for transparent and hard coating film. The hybrid composites consist of $ZrO_2/TiO_2/organosilane$, of which organosilane was introduced 3-(trimethoxysilyl)propyl methacrylate due to the role of a photocurable ceramic material for low temperature process. The ceramic composites with various composition ratios were coated on a polycarbonate substrate using a sol-gel process of low temperature process, and characterized optical and mechanical properties of coated thin film. The transparencies of coated thin films were 97.5 % or more, and the pencil hardness were 9H or more. In the case of the ZTS-2-1, the nano-indentation hardness was measured at the highest value of 1.14 GPa.

Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material (실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구)

  • Son, Dae Hee;Kim, Dae-Sung;Lee, Seung-Ho;Kim, Song Hyuk;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

A Study on the Properties of Ethylene-vinylacetate Emulsion mixed with SBR, Urethane, Epoxy and Acryl Latex (아크릴, 에폭시, 우레탄 및 SBR계 라텍스를 혼합한 에틸렌 비닐아세테이트 에멀젼 수지의 물성에 관한 연구)

  • Park, Young-Sam;Lee, Bok-Yul;Byun, Youn-Seop;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.324-334
    • /
    • 1998
  • SBR, polyurethane, acryl and epoxy latex were seperately mixed with ethylene-vinylacetate emulsion(EVA) in the range of $0{\sim}50%$ (wt.% ). For the mixtures, the various physical properties were examined. The viscosity of mixtures was mainly influenced by compatability with EVA emulsion, was decreased within 20% (wt.% ) of latex content, and showed the similar values over 20% (wt.% ) of latex content. The workable time of cement mixtures was mainly depended on the reactivity with cement. The formation of film could be only within $30{\sim}40$ minutes from mixing cement. The tack-free time of mixtures was influenced by the sorts of resin and the quantity of cement. The slow order of tack-free time was epoxy mixtures>SBR mixtures>urethane mixtures>acryl mixtures. The pencil hardness of mixtures was $4B{\sim}2H$, represented higher value in cement mixtures than in emulsion state.

  • PDF

Characterization of Modified Chloroprene Rubber by Nanosilica as a Primer (Modified Chloroprene Rubber를 이용한 Primer 제조 및 특성평가)

  • Lim, Gyeong Eun;Jeong, Boo Young;Cheon, Jung Mi;Choi, Min Ji;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • Water In this study, CR/silica nanocomposites were produced by dispersing nanosilica on chloroprene rubber (CR) to apply toluene-free primers for mobile devices. The properties of the modified chloroprene rubber using nanosilica was evaluated through FT-IR, SEM, EDS, Contact angle. The SEM images indicated that P-4 (4 phr) was the most homogenously dispersed. Pencil hardness measurements and Contact angle indicated that the hardness of the CR/silica nanocomposite and the hydrophobicity increased with increase in the silica content. The peel strength of P-4 (4phr) was the highest and the initial peel strength of P-4 sample (2.9 kgf/inch) was 50% higher than that of the P-0 sample.

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.