This paper addresses the problem of designing a neural network based controller for a discrete-time nonlinear dynamical system. Using two multi-layered neural networks we first design an indirect controller the weights of which are updated by the informations obtained from system identification. The weight update is executed by parameter optimization method under Lagrangian formulation. For the nonlinear dynamical system, we define several cost functions and by computer simulations analyze the control performances of them and the effects of penalty-weighting values.
In this corrigendum, we offer a correction to [J. Korean Math. Soc. 54 (2017), No. 2, 461-477]. We construct a counterexample for the strengthened Cauchy-Schwarz inequality used in the original paper. In addition, we provide a new proof for Lemma 5 of the original paper, an estimate for the extremal eigenvalues of the standard unpreconditioned FETI-DP dual operator.
Graphical lasso is one of the most popular methods to estimate a sparse precision matrix, which is an inverse of a covariance matrix. The objective function of graphical lasso imposes an ${\ell}_1$-penalty on the (vectorized) precision matrix, where a tuning parameter controls the strength of the penalization. The selection of the tuning parameter is practically and theoretically important since the performance of the estimation depends on an appropriate choice of tuning parameter. While information criteria (e.g. AIC, BIC, or extended BIC) have been widely used, they require an asymptotically unbiased estimator to select optimal tuning parameter. Thus, the biasedness of the ${\ell}_1$-regularized estimate in the graphical lasso may lead to a suboptimal tuning. In this paper, we propose a two-staged bias-correction procedure for the graphical lasso, where the first stage runs the usual graphical lasso and the second stage reruns the procedure with an additional constraint that zero estimates at the first stage remain zero. Our simulation and real data example show that the proposed bias correction improved on both edge recovery and estimation error compared to the single-staged graphical lasso.
전기비저항 탐사법은 지하 천부의 전기비저항 영상화에 널리 사용되어 왔으며, 최근 신속한 자동측정이 가능해짐에 따라 모니터링이 용이하게 되었다. 이 연구에서는 전기비저항 모니터링 자료의 해석을 위한 시간경과 역산법을 개발하였다. 개발된 역산법은 기준모델에 비하여 변화가 큰 모델변수에는 약한 제한을, 변화가 미미한 모델변수에는 강한 제한을 가하는 방법이다. 수치시험을 통하여 시간경과 역산 영상은 시간적으로 변화한 영역을 보다 정확하고 뚜렷하게 영상화함을 확인하였다. 또한 저수지 누수문제에 개발된 시간경과 역산법을 적용하여 누수구간을 탐지할 수 있었으며, 이 누수구간은 측정 기간내에 크게 변화하지 않았음을 확인할 수 있었다.
본 논문에서는 분산 천이 광섬유를 전송로로 채택한 10 Gbps, 20 Gbps, 40 Gbps 전송 시스템에서의 전력 대칭 MSSI(mid-span spectral inversion)에 의한 보상 정도를 변조된 광 펄스의 다양한 첩 파라미터에 따라 분석하였다. 우선 각각의 전송 속도에서 입력 전력 변화에 따른 수신단에서의 EOP(eye-opening penalty)를 계산하여 수신 성능을 양호하게 유지할 수 있는 최대 입력 전력의 크기를 첩 파라미터에 따라 살펴보았다. 또한 MSSI의 장거리 광대역 WDM 전송 시스템에의 적용 가능성을 확인해 보기 위하여 송신단부터 광 위상 공액기(OPC; optical phase conjugator)가지의 첫 번째 광섬유의 분산 계수 D$_{11}$ 변동에 따른 EOP의 고찰을 통해 수신 성능이 양호하게 유지될 수 있는 송신 과장의 범위를 살펴보았다. 본 논문에서 제안된 최적 펌프 전력 조건을 유지하는 MSSI 방법은 이상 분산(anomalous dispersion) 영역에서 변조 과정을 통해 광 펄스에 인가된 초기 첩이 up-chirp 인 경우보다 down-chirp인 경우에서 더욱 효과적임을 확인할 수 있었고. 장거리 WDM 전송에서 비트율에 따라 3.5 dBm 이상의 비교적 높은 전력으로 수~수 십 nm 이상의 광대역 전송이 가능하다는 것을 확인할 수 있었다.다.
This paper describes the design scheme of the three-dimensional structures based on the concept of the cellular automata simulation. The cellular automata simulation is performed according to the local rule. In this paper, the local rule is derived in the mathematical formulation from the optimization problem. The cell density is taken as the design variable. Two objective functions are defined for reducing the total weight of the structure and obtaining the fully stressed structure. The constraint condition is defined for defining the local rule. The penalty function is defined from the objective functions and the constraint condition. Minimization of the penalty function with respect to the design parameter leads to the local rule. The derived rule is applied to the design of the three-dimensional structure first. The final structure can be obtained successfully. However, the computational cost is expensive. So, in order to reduce the computational cost, the material parameters $c_1$ and $c_2$ and the value of the cell rejection criterion (CRC) are changed. The results show that the computational cost depends on the parameters and the CRC value.
JSTS:Journal of Semiconductor Technology and Science
/
제15권5호
/
pp.437-444
/
2015
In simulation-based circuit optimization, many simulation runs may be wasted while evaluating infeasible designs, i.e. the designs that do not meet the constraints. To avoid such a waste, this paper investigates the use of support vector machine (SVM) classifiers in predicting the design's feasibility prior to simulation and the optimal selection of the SVM parameters, namely, the Gaussian kernel shape parameter ${\gamma}$ and the misclassification penalty parameter C. These parameters affect the complexity as well as the accuracy of the model that SVM represents. For instance, the higher ${\gamma}$ is good for detailed modeling and the higher C is good for rejecting noise in the training set. However, our empirical study shows that a low ${\gamma}$ value is preferable due to the high spatial correlation among the circuit design candidates while C has negligible impacts due to the smooth and clean constraint boundaries of most circuit designs. The experimental results with an LC-tank oscillator example show that an optimal selection of these parameters can improve the prediction accuracy from 80 to 98% and model complexity by $10{\times}$.
In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.
새로운 2차원 자력탐사자료 역산 방법을 개발하였다. 중,자력탐사와 같은 포텐셜 자료의 역산에서 가장 문제가 되는 점은 비유일해 문제이다. 일반적으로 자력탐사 자료의 역산은 모델변수의 수가 자료의 수보다 훨씬 많은 불충분 문제이며, 이는 비유일해 문제를 더욱 심화시키게 된다. 일반적인 최소자승법을 자력탐사자료의 역산에 적용하게 되면, 이 상대가 지표면에 집중되는 결과를 초래한다. 본 연구에서는 이러한 비유일해 문제를 극복하기 위하여 모델분해능에 근거한 새로운 모델제한자를 제안하였다. 이 모델제한자는 분해능이 높은 모델변수에는 큰 제한을 가하고, 작은 모델변수에는 약한 제한을 가하게 된다. 따라서 분해능이 낮은 심부의 모델변수도 효과적으로 추정할 수 있다. 개발된 역산 알고리듬을 이용하여, 전형적인 모델에 대한 이론자료의 역산에 적용하였다. 또한 옥천대에서 얻어진 항공자력탐사자료 역산에 적용하였다.
자력탐사자료의 3차원 역산법을 개발하였다. 자력탐사자료의 역산에서 가장 문제가 되는 점은 비유일해 문제와 방대한 계산시간이다. 일반적으로 자력탐사자료의 역산은 모델변수의 수가 자료의 수보다 훨씬 많아 비유일해 문제를 더욱 심화시키게 된다. 또한 자력탐사자료는 심도 분해능이 매우 낮다. 비유일해 문제를 극복하기 위하여 분해능이 높은 모델변수에는 큰 제한을 가하고, 작은 모델변수에는 약한 제한을 가하는 분해능 모델제한자를 제안하고, 이를 적용하여 분해능이 낮은 모델변수도 효과적으로 추정할 수 있었다. 또한 대형 행렬식을 웨이블릿 변환을 통하여 희소행렬로 변환하고, 역행렬의 계산에 병렬계산 방식을 적용하여 계산시간을 획기적으로 절감하였다. 수치실험을 통하여 개발된 3차원 역산알고리듬의 타당성을 검토하였다. 또한 금산 지역에서 얻어진 항공자력탐사자료의 역산에 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.