• Title/Summary/Keyword: Pelvis rotation

Search Result 70, Processing Time 0.022 seconds

Effect of Active Change of Foot Progression Angle on Lower Extremity Joint During Gait (보행 시 의도적인 발 디딤 각도 변화가 하지 관절 부하에 미치는 영향)

  • Go, Eun-Ae;Hong, Su-Yeon;Lee, Ki-Kang;An, Keun-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • Efficient gait is compensate for a lack of exercise, but the wrong walking can cause disease that joints, muscles, brain and body structure(Scott & Winter, 1990). Also many researchers has been studied gait of positive mechanism using analytical methods kinetic, kinematic. This study is to identify nature of knee adduction moment, depending on different foot progression angle and the movement of rotation of pelvis and body. Health study subject conducted intended walking with three different angles. The subjects of this study classified three types of walking; walk erect, pigeon-toed walk and an out-toed gait. Ten university students of K without previous operation and disease record selected for this study. For accuracy of this study, three types of walking carried out five times with 3D image analysis and using analysis of ground reaction force to analyze nature of knee adduction moment and the movement of rotation of pelvis and body. Firstly, the HC(heel contact) section value of intended walk erect, pigeon-toed walk and an out-toed gait was not shown statistically significant difference but TO(toe off) section value was shown that the pigeon-toed walk statistically significant. The value of pigeon-toed walk was smallest knee adduction moment(p< 0.005). Secondly, X axis was the change of rotation movement body and pelvis when walk erect, pigeon-toed walk and an out-toed gait. Shown statistically Y axis was not shown statistically significant but Z axis statistically significant(p<0.05). These result show the significant differences on TO section when walking moment reaches HC, it decides the walking types and rotates the foot.

Kinematic Analysis of the Technique for 500-m Speed Skaters in Curving

  • Song, Joo-Ho;Park, Jong-Chul;Kim, Jin-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Objective: The purpose of this study is to analyze the kinematic characteristics of the national speed skaters in the curve phase of 500-m race. Method: Seven national skaters participated in the study. Race images were acquired using a high - speed camera, and the three-dimensional motion was analyzed. Results: For skaters, whose average velocity in the curve phase is high, the velocity of entry into the straight phase was also fast. The fast skaters showed a larger maximum angle of extension of the knee joints than the relatively slow skaters, and the trunk ROM was smaller. Fast skaters tended to match the timing of the movement of the lower limb with the pelvis, while slow skaters tended to rotate the left pelvis backward. The velocity of the curve phase did not show a clear relationship with stroke time, average trunk angle, and lap time. Conclusion: It is important to skate close to the inner line, keep the trunk ROM below 10 degrees, extend the knee angle to over 160 degrees, and match the movement of the pelvis and lower limb to accelerate in the curve phase. The average velocity of the curves was fast for many athletes, but the competition rankings were low. Therefore, it is possible to improve the performance by optimizing the start technique, the running characteristics of the straight phase, and the physical factors.

Effect of Hip External Rotation Angle on Pelvis and Lower Limb Muscle Activity During Prone Hip Extension (엎드린 자세에서 고관절 신전 시 고관절 외회전 각도가 골반과 하지 근활성도에 미치는 영향)

  • Oh, Yun-Chan;Cynn, Heon-Seock;Yi, Chung-Hwi;Jeon, Hye-Seon;Yoon, Tae-Lim
    • Physical Therapy Korea
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • The aim of this study was to investigate the effect of hip external rotation angle on pelvis and lower limb muscle activity during prone hip extension. Sixteen healthy men were recruited for this study. Each subject performed an abdominal drawing-in maneuver (ADIM) in a prone position, and extended the dominant hip at three different hip external rotation angles ($0^{\circ}$, $20^{\circ}$, $40^{\circ}$) with a $30^{\circ}$ hip joint abduction. Activity of the gluteus maximus (G Max), gluteus medius (G Med), and hamstring (HAM) and the G Max/HAM and G Med/HAM ratios were determined with surface electromyography (EMG). The EMG signal was normalized to 100% maximum voluntary isometric contractions (MVICs) and expressed as %MVIC. Data were analyzed by one-way repeated analysis of variance (alpha level=.05) and the Bonferroni post hoc test. Significant differences in G Max and G Med muscle activity were noted among the three different hip external rotation angles. G Max muscle activity increased significantly at both $40^{\circ}$ (p=.006) and $20^{\circ}$ (p=.010) compared to a $0^{\circ}$ hip external rotation angle. G Med muscle activity increased significantly at $20^{\circ}$ (p=.013) compared to a $40^{\circ}$ hip external rotation angle. The G Max/HAM activity ratio increased significantly at both $40^{\circ}$ (p=.004) and $20^{\circ}$ (p=.014) compared to a $0^{\circ}$ hip external rotation angle. The G Med/HAM activity ratio increased significantly at $20^{\circ}$ (p=.013) compared to a $40^{\circ}$ hip external rotation angle. In conclusion, $40^{\circ}$ and $20^{\circ}$ hip external rotation angles are recommended to increase G Max activity, and $20^{\circ}$ hip external rotation is advocated to enhance G Med muscle activity during prone hip extension with ADIM and $30^{\circ}$ hip abduction in healthy subjects.

Pelvic, Hip, and Knee Kinematics of Stair Climbing in People with Genu Varum

  • Chae, Yun Won;Park, Seol;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.1
    • /
    • pp.14-22
    • /
    • 2018
  • Purpose: This study examined the effects of the lower limb alignment on the pelvis, hip, and knee kinematics in people with genu varum during stair walking. Methods: Forty subjects were enrolled in this study. People who had intercondylar distance ${\geq}4cm$ were classified in the genu varum group, and people who had intercondylar distance <4cm and intermalleolar distance <4cm were placed in the control group. 3D motion analysis was used to collect the pelvis, hip, and knee kinematic data while subjects were walking stairs with three steps. Results: During stair ascent, the genu varum group had decreased pelvic lateral tilt and hip adduction at the early stance phase and decreased pelvic lateral tilt at the swing phase compared to the control group. At the same time, they had decreased minimal hip adduction ROM at the early stance and decreased maximum pelvic lateral tilt ROM and minimum hip rotation ROM at the swing phase. During stair descent, the genu varum group had decreased pelvic lateral tilt at the early stance and decreased pelvic lateral tilt and pelvic rotation at the swing phase. In addition, they had decreased pelvic frontal ROM during single limb support and increased knee sagittal ROM during the whole gait cycle. Conclusion: This study suggests that a genu varum deformity could affect the pelvis, hip and knee kinematics. In addition, the biomechanical risk factors that could result in the articular impairments by the excessive loads from lower limb malalignment were identified.

Kinetic Analysis of Golf Fat Shot (골프 Fat shot에 대한 운동역학적 분석)

  • Sohn, Jee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.523-532
    • /
    • 2013
  • When the golf club hits the ground prior to making contact with the golf ball, we define it as 'fat shot'. The aim of this research was to investigate the difference between normal shot and fat shot in golf. Five candidates playing as recreational golfer participated in this research and they were all right-handed people. Time phase between each event, wrist cocking angle, elbow extension-flexion angle, backswing height, pelvis angle, thorax angle, L-GRF, R-GRF, pelvis linear velocity, pelvis angular velocity and COG path were calculated. For statistical analysis the paired T-test was used. An early un-cocking, an early right elbow extension and impact with leaving their weight behind foot were not reasons of fat shot. Backswing height, X-Factor, pelvis angle and thorax rotation angle were not different between normal shot and fat shot. But we could find a pattern of abrupt pelvic movement and weight shift to target direction just before impact in case of fat shot. In addition fat shot showed time-delayed and small value of pelvis linear velocity pattern to upward during downswing phase as against normal shot.

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

Effects of the Pelvic Control Method on Abdominal Muscle Activity and Lumbopelvic Rotation Angle during Active Straight Leg Raising in Patients with Chronic Low Back Pain (만성요통환자의 능동 하지직거상 동작 시 골반조절 방법에 따른 복부 근활성도와 요골반부 회전각도에 미치는 영향)

  • Kim, Dae-Hyun;Park, Jin
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.223-231
    • /
    • 2020
  • Purpose: The purpose of the study was to compare the effects of different methods of pelvic control on abdominal muscle activity and lumbopelvic rotation angle during active straight leg raising (ASLR) in patients with chronic back pain. Methods: The study participants were patients with low back pain (n = 30). They were instructed to perform ASLR with pelvic control, ASLR with pelvic belt, and ASLR only. Surface electromyography data were collected from the ipsilateral rectus femoris (IRF), ipsilateral internal oblique (IIO), contralateral external oblique (CEO), and ipsilateral rectus abdominal (IRA) muscles, and lumbopelvic rotation angle was measured using a motion analysis device. Results: Activation of all abdominal muscles was greater in the ASLR with pelvic control group than in the ASLR with pelvic belt and ASLR groups. The lumbopelvic rotation angle was lower in the ASLR with pelvic control group than in the other two groups (p < 0.05). Conclusion: These results suggest that ALSR with pelvic control is an effective means of increasing abdominal muscle activity and reducing unwanted lumbopelvic rotation in patients with chronic low back pain. Controlling the pelvis using the opposite leg is an effective form of ASLR exercise for patients with chronic low back pain.

Effects of pressure biofeedback application location for subjects with lumbar instability on pelvic rotation and hip joint abductor muscle activity during the Clam exercise.

  • Choi, Yonggil;Lee, Sangyeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2021
  • Objective: The purpose of this study was to find out how the back instability during clam exercise (CE) causes changes in pelvic rotation and hip joint abductor muscle activity, and to find out the effects with different methods of application of pressure biofeedback. Design: Comparative study using repeated measures. Methods: Each subjects performed the clam exercise (CE) without pressure biofeedback, the clam exercise with pressure biofeedback applied to the back (CE-PBU to back), and the clam exercise with pressure biofeedback applied to the side (CE-PBU to side). The amount of pelvic rotation was measured using myomotion. And the muscle activity of the muscle gluteus medius and the tensor fasciae latae was measured using EMG device. One-way repeated measures ANOVA followed by the Bonferroni post test were used to compare the EMG activity in each muscle and pelvic rotation angle during the CE, CE-PBU to back, CE-PBU to side. Results: The amounts of pelvic rotation was the lowest in CE-PBU to back (p< 0.05) and the ratio of muscle activity of the muscle gluteus / tensor fasciae latae was the highest in CE-PBU to back (p< 0.05). Conclusions: It is thought that, in order to stabilize the waist-pelvis and increase hip joint muscle strength in subjects with back instability, applying clam exercise with pressure biofeedback applied to the lower back is effective in improving waist-pelvic movements and selectively strengthening the muscle gluteus medius.

A Comparative Analysis of Biomechanical Factors and Premotor Time of Body Muscles between Elite College and Amateur Baseball Players during the Baseball Batting Motion

  • Lim, Young-Tae;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: The aim of this study was to analyze biomechanical factors and PMT (premotor time) of body muscles between elite college and amateur baseball players during the baseball batting motion. Method: Kinematic and electromyographic data were obtained for 10 elite college baseball players and 10 amateur baseball players who participated in this study. All motion capture data were collected at 200 Hz using 8 VICON cameras and the PMT of muscles was recorded using a Delsys Trigno wireless system. The peak mean bat speed and the peak mean angular velocities of trunk, pelvis, and bat with PMT of 16 body muscles were computed. These kinematic and PMT data of both groups were compared by independent t-tests (p < .05). Results: The pelvis, trunk, and bat showed a sequence of angular velocity value during baseball batting. The PMTs of right tibialis anterior, left gastrocnemius, external oblique, and erector spinae were significantly different between the two groups. Conclusion: The PMT of body muscles was related to the shifting of body and rotation of the pelvis and the trunk segment, and this action can be considered the coordinated muscle activity of the lower and upper body.

Effects of Bat Type on the Swing Motion of High School Baseball Athletes

  • Choi, Min Ra;Song, Sung Woo;Cha, Myung Joo;Shin, Min Young;Lee, Ki Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.87-92
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the factors affecting two kinds of bat swing behavior through kinematic analysis. Method: A total of 32 high school baseball players participated in this study. The ball was placed on the tee-ball in a position where the subject could easily swing and the standard bat swing was performed as quickly and as accurately as possible using aluminum bats and wooden bats. Results: The aluminum bat showed a rapid swing speed of about 1.79 m/sec compared to the wooden bat. The speed of the batted ball was found to be significantly greater for the aluminum bat than for the wooden bat. In addition, although the difference between the shoulder-pelvis rotation angle according to the type of bat was not indicated, there was a statistically significant difference between the aluminum bat and the wooden bat in terms of the rotational angular velocity. Conclusion: Even though the results can explain the difference between the bat swing speed and the speed of the batted ball depending on the bat's material, it is difficult to explain the difference depending on the type of bat at the shoulder-pelvis rotation angle. However, shoulder-pelvic rotation angular velocity appears to be higher for the aluminum bat, and the differences in the type of bat is considered to be related to the batting swing factor.