• Title/Summary/Keyword: Peltier Refrigerator

Search Result 7, Processing Time 0.02 seconds

A Study on flow optimization of thermoelectric refrigerator using visualization technique (가시화 기법을 이용한 열전소자 냉장고의 유동최적화에 관한 연구)

  • Kim, Bo-ra;Lee, Change-je;Jeong, Yeon-ho;Whang, Kwang-il;Cho, Gyeong-rae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.94-99
    • /
    • 2021
  • In order to increase the efficiency of thermoelectric refrigerators using the Peltier effect, it is necessary to optimize the distribution of the flow of cold air from the fan. In this study, the flow flowing upwards and downwards while changing the area of the flow path was visualized using the PIV technique for the control of cold air in a thermoelectric refrigerator. From these results, the flow rate according to the change in the area of the flow path was confirmed, and design criteria for optimizing the distribution of cold air flowing to the top and bottom of the refrigerator were suggested.

Optimization of Peltier Current Leads Cooled by Two-Stage Refrigerators

  • Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.94-101
    • /
    • 2006
  • A theoretical investigation to find thermodynamically optimum design conditions of conduction-cooled Peltier current leads is performed. A Peltier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high temperature superconductor (HTS) lead in the order of decreasing temperature. Mathematical expressions for the minimum heat flow per unit current crossing the TE-metal interface and the minimum heat flow per unit current from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE -metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the TE and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in the current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

The Development of Refrigerator Using the Thermoelectric semiconductor (열전반도체를 이용한 냉장고의 개발)

  • Chung, Yong-Ho;Lee, Woo-Sun;Lee, Young-Jin;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.50-53
    • /
    • 2001
  • The thermoelectric refrigeration technologies have no moving parts. compressor, or piping required. In this study, the basic capacity of thermoelectric devices and development on some thermoelectric refrigerator were reviewed and basic technical concepts related with many kinds of thermoelectric materials were discussed. Especially the result of performance test on thermoelectric refrigerator whose minimum temperature of $-2^{\circ}C$ was introduced briefly.

  • PDF

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Optimization of Conduction-cooled Pottier Current Leads (전도냉각형 펠티어 전류도입선의 최적화)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.764-771
    • /
    • 2005
  • A theoretical investigation for optimization of conduction-cooled Peltier current leads is undertaken. A Pottier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high Tc superconductor (HTS) lead in the order of decreasing thermoelectric tempera ture. Mathematical expression for the minimum heat flow per unit current crossing the TE metal interface and that flowing from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE-metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the 73 and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar (전자냉동 김치독의 열유동 및 성능 특성)

  • Song, Kyu-Soek;Kim, Kyung-Hwan;Lee, Seung-Chul;Ko, Chul-Kyun;Lee, Jae-Heon;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

A study on the maturation of cardiomyocytes by continuous supply of culture media (세포 배양액의 연속 공급기 제작을 통한 심근세포의 성숙개선에 관한 연구)

  • Kwon, WooJin;Kim, Geun Woo;Jeong, Unseon;Kim, Jongyun;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-113
    • /
    • 2021
  • In this study, an automated culture media replacement system was developed to analyze changes in the contraction characteristics of cardiomyocytes according to the state of the culture media. For the long-term storage of culture media, a Peltier refrigerator with a temperature of 5 to 8℃ was provided and a pH of 7.4 was maintained. The cell culture media of the cardiomyocytes was continuously replaced using interlocking pumps at a flow rate of 0.83 μl/h. The cardiomyocytes in which the culture media was replaced automatically demonstrated lower heartbeats per minute compared to samples in which there was no replacement. However, these cardiomyocytes moved more uniformly and produced greater displacement in one heartbeat cycle. It was observed that the sarcomere length of the cardiomyocytes increased due to the automated culture media replacement system. These cardiomyocytes were found to demonstrate better maturation compared to the control group. The maturation of cardiomyocytes was verified through staining images. The proposed automated culture media replacement system generates a uniform heart rate and improvements in contraction force. Based on the study, patient-specific drug toxicity assessments can be conducted using differentiated cardiomyocytes in induced pluripotent stem cells.