• Title/Summary/Keyword: Peltier Cooling

Search Result 63, Processing Time 0.017 seconds

The Adsorption/Desorption Behavior of Odorous Compounds on Clothing Materials: A Case Study on Reduced Sulfur Compounds (피복류에 대한 냄새성분의 흡탈착 거동특성에 대한 연구: 환원황 성분의 분석을 중심으로)

  • Kim Ki-Hyun;Choi Ye-Jin;Yang H.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • In this work, the adsorptive and desorptive behavior of reduced sulfur compounds (RSC) was investigated using the combination of the Peltier cooling (PC)/thermal desorption (TD) unit with the gas chromatographic (GC) detection technique. To examine the adsorptive characteristics of RSC on clothing materials, a total of nine experiments were conducted in a stepwise manner. Once small towel pieces are exposed to significant quantities of RSC standards with high concentrations (10 ppm), the desoprtion stage was then induced by deloading RSC with ultrapure $N_2$ at three different flow rates (FR) of 20, 40, and 60 mL/min. At each FR, the total deloading volume of 400, 800, and 1,600 mL were maintained. These results were then compared in terms of odoring efficiency by dividing the total amount of desorption with the total amount used for exposition or RSC loading. The results indicated that desorption reaction of certain compounds ($CH_3SH$ and DMS) can be influenced significantly with the reducing FR, while they are not affected directly by the total deloading volume. In addition, when the extent of adsorption was compared for most S compounds by the odoring efficiency term, the extent of absorption generally occurred at approximately 1/1000 level of original exposition.

Research on Heat-Sink of 40Watt LED Lighting using Peltier Module (펠티어 소자를 이용한 40[W]급 LED 조명기구의 방열에 관한 연구)

  • Eo, Ik-Soo;Yang, Hae-Sool;Choi, Se-Ill;HwangBo, Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.733-737
    • /
    • 2007
  • The object of this paper is to propose a method to solve resulting heat in using numerous modulized watt-class LEDs in MCPCB as lighting device. To use LED for lighting, the chip needs to have a large capacity, resulting in extra heat in P-N connection area. To solve this problem, a Pottier Module, heat-sink panel and a fan was installed to measure variations in the temperature. Additionally, temperature variation characteristics were observed according to the heat conductor panel connecting cooling module and heat-sink panel, insulator and thermal grease. As a result, the type and amount of heat-sink panel was the most important facto. The fan would effect the temperature by max. $18[^{\circ}C]$ while other materials affected the temperature by $2{\sim}3[^{\circ}C]$, showing significant difference.

  • PDF

DEVELOPMENT OF CCD IMAGING SYSTEM USING THERMOELECTRIC COOLING METHOD (열전 냉각방식을 이용한 극미광 영상장비 개발)

  • Park, Young-Sik;Lee, Chung-Woo;Jin, Ho;Han, Won-Yong;Nam, Uk-Won;Lee, Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E(768$\times$512 pixels) CCD chip, thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of $-25^{\circ}C$. We employed an Uniblitz VS25s shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO) ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of $-10^{\circ}C$, a linearity 99.9$\pm$0.1%, gain 4.24e-/adu, and system noise is 25.3e-(rms). For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry($\pm$0.01mag) even though the CCD is not at 'conventional' cryogenic temperatures(140k). The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  • PDF