• Title/Summary/Keyword: Peltier Cooling

Search Result 63, Processing Time 0.038 seconds

Design and Development of SMH Actuator System (SMH 액추에이터 시스템 설계 및 개발)

  • Kwon T.K.;Choi. K.H.;Pang. D.Y.;Lee. S.C.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.551-555
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of SMH actuator using a peltier module. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloy as a power source, Peltier elements as a heat source and a cylinder with metal bellows a functioning part has been developed. The SMH actuator is characterized by its small size, low weight, noiseless operation and a compliance similar to that of the human body. A new special metal hydride(SMH) actuator that uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing ally. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times as their own volume. To improve the thermal conductivity of the hydrogen-absorbing alloy, an electro-less copper plating has been carried out. The effects of the electro-less copper plating and the dynamic characteristics of the SMH actuator have been studied. The hydrogen equilibrium pressure increases and hydrogen is desorbed by heating the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. Therefor, the SMH actuator has the characteristic of being light and easy to use and so is suitable for use in medical and rehabilitation applications.

  • PDF

Development of SMH Actuator System Using Hydrogen-Absorbing Alloy

  • Kwon, Tae-Kyu;Jeon, Won-Suk;Pang, Du-Yeol;Choi, Kwang-Hun;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1328-1333
    • /
    • 2005
  • This paper presents the temperature-pressure characteristics of a new SMH actuator using a Peltier module. The SMH actuator is characterized by its small size, low weight, noiseless operation, and compliance similar to that of the human body. The simple SMH actuator, consisting of the plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a functioning part has been developed. To improve the thermal conductivity of the hydrogen-absorbing alloy, an assembly of copper pipes has been used. It is well known that hydrogen-absorbing alloys can reversibly absorb and desorb a large amount of hydrogen, more than about 1000 times of their own volume. The hydrogen equilibrium pressure increases when hydrogen is desorbed by heating of the hydrogen-absorbing alloys, whereas by cooling the alloys, the hydrogen equilibrium pressure decreases and hydrogen is absorbed. The new special metal hydride (SMH) actuator uses the reversible reaction between the heat energy and mechanical energy of a hydrogen absorbing alloys. The desirable characteristics of SMH actuator, which makes it suitable for the uses in medical and rehabilitation applications, have been also studied. For this purpose, the characteristics of the new SMH actuator for different temperature, pressure, and external load were explored.

  • PDF

Development of Automatic Tool Changer of SMA Tool Holder (SMA를 이용한 공구홀더의 자동공구교환장치 개발)

  • Lee, Sungcheul;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Micromanufacturing is a useful system for reducing energy consumption. For micromanufacturing, tool clamping and workpiece clamping are important components to realize the machining process. Therefore, a shape memory alloy (SMA) ring type tool holder is developed. In addition, this holder needs cooling and heating processes to execute the tool clamping process. This study suggests a cooling/heating device based on peltier elements. The device will be applied to the heating/cooling process of an automatic tool changer (ATC) for the SMA tool holder. This study introduces the configuration and operating principle of the proposed ATC system. The description and prototype evaluation of this system were given. Plastic bolt and aluminum block were selected to enhance the cooling performance, and the installed tool was changed in 17 s during the experiments.

Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar (전자냉동 김치독의 열유동 및 성능 특성)

  • Song, Kyu-Soek;Kim, Kyung-Hwan;Lee, Seung-Chul;Ko, Chul-Kyun;Lee, Jae-Heon;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

Development of a Drain-Type Electronic Dehumidifier Using Thermoelectric Element (열전소자를 이용한 배수형 전자제습기 개발)

  • Kang, Deok-Hong;Kim, Seong-Hwan;Kim, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3524-3528
    • /
    • 2007
  • In this study, the Peltier effect was applied to eliminate moistures in the air enclosed by a cabinet. We have developed the new electronic dehumidifier which has a new function of automatically evaporating the condensed water inner cabinet into the outside air. To obtain this function, the processes of dehumidification is that it condensed the moistures on the cold side heat sink and drained it into the hot side heat sink by the both gravitational and capillary forces and the droplets on the hot side heat sink surface was evaporated into the air outside the cabinet by the heat conducted through the hot side heat sink surface and the forced heat convection through the fan for cooling hot side heat sink. Compared to existing electronic dehumidifiers, this manufactured one showed a good performance that the electric power consumption for the same dehumidifying quantity was reduced by 50% compared with that of existing ones.

  • PDF

Simulation of thermal design and thermoelectric cooling for 3D Multi-chip packaging (3D Multi-chip packaging 을 위한 열 설계 및 열전 냉각 성능 시뮬레이션)

  • Jang, B.;Hyun, S.;Kim, J.H.;Lee, H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.711-712
    • /
    • 2009
  • MCP 기술을 이용한 반도체 칩에서 문제가 되는 방열문제를 해결하기 위한 방법으로 열전 냉각 소자를 이용하여 열을 방출 시키는 방법에 관하여 연구를 수행하였다. 시뮬레이션을 통하여 열전 소자가 작동할 때, 흡수하는 열량을 계산할 수 있었으며, 열전 소자의 냉각 성능도 평가 할 수 있었다. 이러한 열 해석 및 열전 해석을 통하여 적층 구조의 MCP 모듈을 위한 열 설계 및 효율적 냉각을 가능하게 할 수 있을 것이다.

  • PDF

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

A Study about the Modelling of Thermoelectric Cooler and the Thermal Transfer Analysis (열전 냉각기의 모델링 및 열전달 해석에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1291-1296
    • /
    • 2014
  • The thermoelectric cooler is receiving great interest because of advantages such as the precise temperature control capability, the compact and lightweight cooler, and the mechanical vibrationless structure which enhances the reliability compared with the existing vapor compression cooler. However, it is not easy to design the optimal thermoelectric cooler which appropriate to the application because the thermal analysis should be necessary required. Accordingly, this paper studies the methodology of the modelling, sizing and thermal analysis of the thermoelectric cooler using SINDA/FLUINT analysis tool.

Control of Heat Temperature in Light Emitting Diodes with Thermoelectric Device (열전소자를 이용한 발광다이오드의 발열 온도 제어)

  • Han, S.H.;Kim, Y.J.;Kim, J.H.;Kim, D.J.;Jung, J.Y.;Kim, S.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.280-287
    • /
    • 2011
  • The heat temperature of a light emitting diode (LED) is investigated with the thermoelectric device (TED). The Peltier effect of the thermoelectric device is used to control the heat radiation and the junction temperature of high-power LEDs. For the typical specific current (350 mA) of high-power (1 W) LEDs, the LED temperature and the p-n junction temperature become $64.5^{\circ}C$ and $79.1^{\circ}C$, respectively. For 0.1~0.2 W driving power of TED, the LED temperature and the junction temperature are reduced to be $54.2^{\circ}C$ and $68.9^{\circ}C$, respectively. As the driving power of the TED increases over 0.2 W, the temperature of LED itself and the junction temperature are increased due to the heat reversed from the heat-sink to LED. As the difference of temperature between LED and the heat-sink is increased, the quantity of reversed heat becomes larger and it results to degrade the cooling capability of TED.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.